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V

The construction of economic "models", and indeed

the whole of economic theory, can be regarded as a (rather

pedestrian)subsection of mathematics, gaining interest

only when tested as an explanation of the real world.

Sir Charles Carter. Higher education for the

future (Blackwell, Oxford 1980), p.94

But I know I had a growing feeling in the later

years of my work on the subject that a good mathematical

theorem dealing with economic hypotheses was very un-

likely to be good economics: and I went more and more

on the rules - (1) Use mathematics as a shorthand

language, rather than as an engine of enquiry. (2) Keep

to them till you are done. (3) Translate into English.

(4) Then illustrate by examples that are important in

real life. (5) Burn the mathematics. (6) If you

can't succeed in 4, burn 3. This last I did often.

Letter from Marshall to Bowley. Memorials of

Alfred Marshall (Ed. A.C. Pigou) (Macmillan,

London, 1925), p.427.
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ix
PREFACE

These are the expanded notes of a course intended

to introduce mathematicians to some of the central ideas

of traditional economics. They are just notes; they

lack the "corroborative detail, intended to give artis-

tic verisimilitude to an otherwise bald and unconvincing

narrative".

There appears to be no book doing what the course

attempts to do. Perhaps the nearest approach is

E. Malinvaud, Lectures in microeconomic theory (North

Holland and American Elsevier, 1972), which is particu-

larly relevant to the first four chapters. There is

also a useful account of the subject matter of Chapters

1-4 in D. Deweyfs Microeconomics (O.U.P. paperback, 1975).

The topics of Chapter 5 are those of the last chapter of

David Galef s admirable Theory of linear economic models

(McGraw Hill, 1960), but we take them somewhat further.

Finally, the simple models of Chapter 6 are discussed

at exhaustive length in P.A. Samuelsonfs Economics

(McGraw Hill, Kogakusha, 10th ed., 1976) (especially

Chapters 12,13,18). This is a massive text intended

for the mathematically underdeveloped, but it can be

read without a shudder. Indeed it seems to be the

best general introduction to the background of the

whole course and explains the buzzwords, without which

no discussion in economics is complete. Adam Smith's

Wealth of Nations still makes interesting reading.

There is a fair number of books on the market with

the title "Mathematical economics" or something similar.

Those I have sampled have been disappointing. They

devote considerable space to expounding standard mathe-

matics. When they get down to use it, they tend to be

clumsy, and some are not above a blatant fudge.

I am grateful to colleagues and friends, in par-

ticular to Dr. H.M. Pesaran, for helpful comments and
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suggestions. Needless to say, any remaining mistakes

and misconceptions are mine alone.

Further reading (in addition to books named above):

R.G.D. Allen. Macroeconomic theory (Macmillan, 1967) .
Gives a description of a wide zoo of macroeconomic
models that have been proposed in the past (with
their sometimes beguiling, terminology): they
mainly involve differential and difference
equations.

K. Arrow and F.H. Hahn. Competitive analysis (Holden-
Day; Oliver and Boyd, 1971).

R.L. Crouch. Macroeconomics (Harcourt, Brace,
Jovanovich, 1972) .

S.J. Turnovsky. Macroeconomic theory and stabilization
policy (Cambridge University Press, 1977).
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XI

NOTATION

Real vectors are denoted by underlined lower case

letters (Latin and, occasionally, Greek) with the con-

vention exemplified by x = (x..,...,x ) . The inner

product is written e.g.

Ex = P l x x +...+ pnxn .

We do not in the notation distinguish between row

and column vectors, since which is which should be clear

from the context. In general, vectors of goods

("bundles of commodities") are column vectors and prices

are row vectors.

There is the following notation for inequalities

between vectors of the same dimension:

x > y_ means x. > y. (all j) .

x > y_ means x > y_ but x =)= y_ .

x >> y_ means x. > y. (all j) .

Sometimes vectors are labelled with suffixes or

superfixes e.g. x. or y_ . In this case the j-th

coordinate is x. . or y"!" respectively.

Partial derivatives may be denoted by suffixes. If

f = f(x, ,...,x ) , then f. = 3f/3x. . Sometimes,

however, suffixes are used merely to label functions.

Here, again, further suffixes may denote partial

derivatives. Thus if f. (1 < i < m) is a set of

functions of x,,...,x , we may write f.. = 3f^/3x. .

The context will make everything crystal clear.

We denote the unit matrix (with 1 on the diagonal

and 0 elsewhere) by I and the zero matrix (all of

whose elements are 0 ) by 0 .
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CHAPTER 1. UTILITY, INDIFFERENCE HYPERSURFACES

1. Preliminaries

We shall be modelling the preferences of an indi-

vidual between "bundles of commodities". We suppose

that there are n commodities (or goods) labelled

l,...,n . A bundle of commodities is a real vector

x = (x-.,...,x ) > 0 , where x. is the quantity of-L n 3
commodity j (in some given units). The commodities

are supposed to be infinitely divisible, so that the

x. can take all non-negative values.

A given individual is supposed to have an order of

preference between any two bundles x,y . Either he

prefers x to y (written x >- y) or he prefers ^

to x (y_ >- x) or he is indifferent between them (written

x Xy_) . If either x >- y_ or x ^ y we write x fr y.

We suppose that the preferences are consistent, in the

sense that -̂ satisfies the usual postulates for a

(pre-) order:
x >p- y_ and ^ ̂? x => 2£ ̂  X (1-1)

x ^ y_ and y_y z; => x >- ẑ  (1.2)

x y y_ and £ ̂  .z ^ 2£ *" JE. • (1.3)

We shall suppose that our individual prefers to

have more of each good rather than less (the goods

actually are "goods" and not "bads"):

x ^ y _ = > x ^ Z - (1.4)

We shall usually make the stronger supposition that

x > x = > x _ > " Y _ ' (1.5)
at least when

y_ >> 0 . (1.6)

The bundles of goods v_ in which a component is 0 may
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2

behave anomalously in the theory and we may not always

discuss in detail the modifications required in the

theory to deal with them.

It is a standard assumption in economics that for

any x the set

V(xQ) = {x : x > xo
} (1-7)

is convex. This may be regarded as a consequence of

the "law of diminishing returns". The assumption is

crucial in most of what follows. There will, however,

be one or two places where we shall drop the condition

that V(x ) is convex, but then we shall do so

explicitly.

We shall be concerned only with preferences that

can be given by a utility function. This is a con-

tinuous real-valued function u(x) defined on the

bundles of commodities x > 0 . The corresponding pre-

ference >- is given by

x ^ ̂  <=> u (x) > u (y) .

We shall suppose that the u(x) are continuously dif-

ferentiable to the extent that the argument requires.

The condition (1.5) implies that the set

u(x) = constant (1.8)

is a hypersurface. It is called an indifference

hypersurface. If X'V_ are on the same indifference

hyper surf ace, then x x y_ : an<^ conversely. The con-

vexity assumption on V(x ) implies that indifference

hypersurfaces are convex. We shall normally suppose

that they are strictly convex.

Commonly used examples of utility functions are

nXj (1 < j < n) , (1.9)

or, more generally,

nx^(j) (1 < j < n) , (1.10)

where the a(j) > 0 are constants. These satisfy all

the assumptions made so far, except that the indifference
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3

hypersurfaces u(x) = 0 are not strictly convex.

Two utility functions u (x), v(x) give the same

preference relation if and only if there is a con-

tinuous strictly increasing function <J> such that

v(x) = c()(u(x)) . (1.11)

The theory will not distinguish between u and v .

That is to say, we shall attach significance to inequali-

ties between u(x) for different bundles x but we

shall not attach any meaning to the value u(x) itself.

[Our utilities are ordinal, not cardinal. There are

theories with a cardinal utility. Edgeworth construc-

ted the first in his Mathematical Psychics on the basis

of the "hedonistic calculus", and, more recently, von

Neumann and Morgenstern used the theory of games: but

we shall never be concerned with their concepts.]

Warning. Although we suppose that the indifference

hypersurfaces are convex, we do NOT suppose that u(x)

is a convex function of x .

2. Budget constraints
A price vector is a vector £ > 0 of the same

dimensionality n as the bundle of commodities. The

j-th component p. is the price of (a standard unit of)

the j-th commodity. If p. = 0 , the good j is

free. To avoid special cases we shall sometimes as-

sume that no good is free. The price vectors lie in

the dual vector space to that of the commodity bundles

x . In particular, the scalar product £x is defined.

It is the cost of x at prices £ . [The term "value"

is sometimes used, but is usually reserved for the

concept introduced in Chapter 5, §3.]

A budget constraint is an inequality of the type

£X < R , (2.1)

where the prices £ and the budget R > 0 are given.

An individual maximizes his utility subject to the con-

straint. Under the conditions of the previous section
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Figure 1.

This diagram illustrates (for n = 2) choice with a
utility function subject to a budget constraint.
The point _£ maximizes utility subject to px < R .
The line £x = R is tangent to the indifference
curve through _£ . Another indifference curve is
also shown.
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5

there is a unique

K = _C(£,R) (2.2)

which does this, and it lies on the hyperplane

£x = R . (2.3)

The hyperplane (2.3) is clearly a tac-hyperplane to

V(£) = {x:u(x) > u(£) } . (2.4)
I f k >y 9. ' t n e only tac-hyperplane at _£ is the tan-

gent hyperplane-, and so

Pj = *UjU) (2.5)

for some X > 0 , where by definition,

Uj(x) = 3u(x)/3x. . (2.6)

If, however, £ . = 0 for some j , then (2.5) need not

hold.

Conversely, if _£ is any bundle of commodities with

j; >> 0 and £ is given by (2.5) for some X , then

JL = -£(£'R) f o r s o m^ budget R .

We shall be examining the behaviour of _^(p,R) as

£ and R vary, but first study what turns out to be an

easier problem.

3. Indifference hypersurfaces

In this section we consider a single indifference

hypersurface U . For every price vector £ > 0 there

•̂•s a J5.(£) £ u which minimizes the cost JDX for

x e U . We shall study .z(£) as a function of £ .

By definition

£X > £z(£) (all x e U) . (3.1)

On the assumption of strict convexity, there is in-

equality in (3.1) if x ? z^£) .

Now let £* > 0 and £° > 0 be two price vectors

and write

* = Z(£*

By (3.1) we have
o * ^ oo * o ^ * *

z* = z(£*), TP = z{^°) . (3.2)

and so

(£*-£°) (z*-!0) < O . (3.4)

This is known as the Substitution Theorem.
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In particular, if £ , p° differ in only one

, (3.5)

. Hence

< n) , (3.6)

provided that the partial derivative exists.

We can generalize (3.6). Let i_ be any vector

and put £ = £* + 6i_, where 6 -> 0 . On substituting

in (3.4) we readily obtain

£ £i£j3zj(£)/8pj < 0 (all I) . (3.7)

coordinate,

then

*

(3

3z

.

j

> p

4)

(£)

say
o ^
1 ' Pj
implies

/3p <

that

0

LJ
.

*
Zl
(1

> 1

• • !

We shall comment on the significance of this below.

Now make an infinitesimal change in price from £

to £ + d£ and let the corresponding change in:z=^(£)

be from _z to z: + d_z . Then ẑ  + djz is in the tan-

gent plane to U at z^ , and so

£d_z = 0 . (3.8)

We define r(£) to be the least cost of a bundle on U

at prices £ , that is

r(£) = £z(£) . (3.9)

By (3.8) we have

dr = £d_z + zjd£

. (3.10)

Since (3.10) is a perfect differential, we have

. (3.11)

This is the reciprocity theorem.

If the common value of (3.11) is positive, we say

that the goods j and k are substitutes (if the price

of tea goes up, we drink more coffee, and vice versa).

If (3.11) is negative, then j and k are complements

(if the price of tea goes up, we use less sugar, and

vice versa). By (3.6) and (3.8) we have

E p.(3z./3p ) = -p (3z /3p ) (3.12)
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and so in some sense substitutes are more frequent than

complements.

Note 1. By definition .z (p) is homogeneous of degree 0

in £ :

£(X£) = _z(£) (X > 0) . (3.13)

By Euler's Theorem it follows that

I pvOz./3p,) = 0 (1 < j < n) . (3.14)

But this gives no further information, since it follows

from (3.8) and (3.11).

Note 2. We do not appear to have used the hypothesis

of the convexity of (1.7) except to show that z,(p) is

uniquely determined by p , and indeed much of the

argument (e.g. the proof of (3.4)) does not even re-

quire that. Let us suppose that the indifference hy-

persurf ace U is the frontier of (1.7) . If (1.7) is

not supposed to be convex, the .z(p) will nevertheless

all lie on the frontier U* of the convex cover of

(1.7). In other words, if (1.7) is not convex, we

should never be able to find this out!

Note 3. The condition (3.7) is essentially equivalent

to the definiteness or semi-definiteness of the matrix

of second derivative of a convex function (cf Appendix A).

For an approach along these lines, see K. Lancaster's

Mathematical Economics (not recommended). One defines

£ in terms of ẑ  instead of vice versa and then uses

that £ runs over a convex hypersurface.

4. Utility functions

We now revert to the situation discussed in

section 2. There is a utility function u(x) and for

given price vector £ > 0 and budget R the vector

_C = ^(£,R) maximizes u(x) subject to £x < R . We

introduce the notation

v = 3^/3R . (4.1)

In section 3 we considered an indifference
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hyper surface U : u (x) = constant . The function z.(p)

considered there is given by

z(E) = Up,r(E)) , (4.2)

where r (JD) is given by (3.9) . Hence

Or/9p-j)

(4.3)

by (3.10). It follows that

d_£ = Vdp + v(dR-^d£) , (4.4)

where V is the matrix (tensor) whose elements are

given by

Vjk = 3Zj/8pk = OCj/^u-const.' H.5)

It is symmetric by (3.11). The equation (4.4) is

called the Slutsky equation. In interpreting it we

note that j;d£ is the change in the budget R required

to keep the utility constant in compensation for the

change dp in prices. The second term in (4.4) is

called the revenue term (and dR-^dp is the compensated

change in revenue). The first term is the

substitution term and can be regarded as giving the

change in the distribution of consumption arising from

the change in prices but discounting any revenue effect.

By (4.4) and (4.5) we have

' (4'6)

Here the first term on the RHS is <0 by (3.6). In

general, 3£,/8R > 0 : then 3£-,/9p-, < 0 in accordance

with intuition. It can however happen that 3£,/8R < 0 .

If so, the good 1 is called an inferior good (when

someone's income increases, he buys less margarine).

It is indeed possible for the LHS to be < 0 . If so

the good 1 is called a Giffen good: less of it is

bought when the price falls. Such goods are more fre-

quent in exam questions than in real life. It is said,

however, that when the price of potatoes fell after the

Irish famine, then so did the consumption of potatoes.
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(The peasants could afford to move to a diet which in-

cluded items other than potatoes.)

Further reading

Preferences utility and demand. A Minnesota Symposium.

(Eds. J.S. Chipman, L. Hurwicz, M.K. Richter and

H.F. Sonnenschein.) Harcourt Brace Jovanovich Inc.,

New York, 1971.
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Figure 2.

An inferior good
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Chapter 1 Exercises

2

Define -̂ on the non-negative quadrant of R by

(a,b) y (c,d) if either a > c or a = c and

b > d . Show that y is an order but is not given

by a utility function.

Let the order >* be defined on the non-negative

orthant of Rn . Show that the two following

statements are equivalent.

(i) There is a continuous function u (x) such

that x >- y_ precisely when u (x) > u (y_) .

(ii) For any x the sets {x : x >p- x } and

{x : x )p- x] are closed.

[Hint. If (ii) holds, define u(x) first for

the x of a countable dense subset, say Q .]

(Index numbers.) Suppose that there is a transi-

tion from a state A to a state B . In State A
A A

there is a bundle x and the price vector is £

and similarly for state B . The Laspeyre index

L of state B to base A values the bundles

with £ and is by definition

L = £ AX B/EV .

The Paasche index P values with £ and is by

definition

P = £BxB/£
BxA .

Now let U be an indifference hypersurface and
A A

suppose that x minimizes £ x on U ; and
A Asimilarly for B (so x = ^(£ ) in the notation

of §3). Show that

L > 1 > P .

Prove the following "generalized substitution

theorem". We suppose that the goods l,...,r are

useful only because they contain a certain

"generalized good" G . Let the amount of G in

a unit of good j be w. (1 < j < r) ; so that
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the total amount of good G in a bundle x of commo-

dities is g = £ w.x. . Let P be the price of G,
j<r 3 3

so that the price of j is p. = w.P (1 < j < r). In the

notation of §3 let ^(p) minimize cost on the indif-

ference hypersurface U. If P increases but p. is

kept fixed for j > r, show that the amount of G in

£(£) decreases.

In the notation of §3, let d ( 1 )£, d(2)£ be two in-

finitesimal changes in the price vector £ and let

d JZ, d z_ be the corresponding changes in

z = £(£). Show that d ( 1 )£d ( 2 )£ = d ( 2 )£d ( 1 )^ .

An individual chooses the bundle x/-3' given prices

£
( ^ and budget R ( ^ (j = 1,2) . if £<

1>x(1)> £(1)x(2)

show that £
( 2>x ( 1 )> £ ( 2 )x ( 2 ). « E

( 1 )x ( 1 )< £
( 1 )x ( 2>

show that no conclusion can be drawn about the dif-

ference between £ ( 2 )x ( 1 ) and £ ( 2 )x ( 2 ) .

[Note. In the first case there is said to be a

revealed preference for x over x . ]

7. A worker is paid an hourly wage w. He chooses

the time he works daily so as to maximize u(x,y),

where x is the amount of his daily leisure and y

is his daily earnings. Here u(x,y) is a utility

function of the usual sort. Construct examples in

which an increase in w results in (i) an increase,

and (ii) a decrease in the time worked. Is it

possible for an increase in w to result in a de-

crease in the amount y earned?

8. Draw (for n = 2) the level curves of a utility

function which displays the Giffen goods phenomenon.

9. In the notation of (4.4) show that JDV = 1. If

none of the goods is inferior, deduce that

0 < p.v. < 1 for each j .

10. (Rationing.) Notation as in §3. The indif-
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ference surface U and the price vector p are

fixed. The good 1 (but no other good) is

rationed; that is the quantity x-, of good 1 chosen

must satisfy x.. < c for some c > 0 , where
c < zl (£) • T^e consumer minimizes JDX on U

subject to the condition x, < c , say at y = j(c).

Show that y, = c .

If c varies but p,U are kept fixed, show

that dy^/dc > 0 or < 0 according as good 2 is

a complement of, or a substitute for, good 1.

[Hint. Show that

y = ,z(X,p2,...,pn)

where \ = X(c) > p.. is a decreasing function of

c .

Background. D.H. Howard. Rationing, quantity

constraints, and consumption theory. Econometrica

£5 (1977), 399-412.]

11. (Rationing, alternative model.)

(i) Notation as in §4. The prices £ , budget

R and utility function are fixed. The good 1 is

rationed; that is, the quantity available b (say)

satisfies b < ^(E/R) • Show that utility is

maximized subject to the budget constraint by a

bundle of goods J3 , where .§.-»= b an<3

J5 = _C(TT,P2, .. ,,pn, R + Trb - pxb)

for some i\ > p. .

(ii) Suppose that no good is inferior. If the

ration b is allowed to vary, the other parameters

being fixed, show that dTr/db < 0 .

[Hint. Use the Slutsky equation to show that

(1 - TTV-J + p, V-.) db = V-.-.dTT ,

where the coefficient of db is > 0 by exercise 9.]

(iii) Suppose that good 2 is a complement of good 1.

Show that d$2/db > o .

12. Fill in the details of the following alternative
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model [J.R. Hicks, Revision of demand theory,

Chapter 16].

(i) In addition to the n goods labelled

l,...,n there is a special good "money" labelled

0. By definition, the price of money is always

unity;

Po = 1 . (£)

We work on a fixed indifference hypersurface

U c R . For any bundle q = (q-.,.../q ) of

commodities there may or may not be an m = m(c[) > 0

such that (m,c[) e U . We restrict attention to

the set S of q for which m(q) exists. There

is then a unique price vector £ = (p-,,...,P ) = £(£)

such that the tac-hyperplane to U at (m,q) is

of the shape

n
x + E p.x. = (l,£)x = const.+ E p.x. = (l,£)x =

Show that

(ii) If the common value of ($) is > 0 we say

that goods j,k are quantity-substitutes. For

n = 2 show that j,k are quantity-substitutes

precisely when they are substitutes as defined in

the text. Show, further, that this need not be

the case when n > 2 .

(iii) (cf Exercise 3). Let qA, qB e S and let
A Bp , p be the corresponding prices. The Laspeyre

price-index (weighted for goods) is by definition

L* = E V / E V
and the Paasche price-index is

p* = EV/EV •
Show that

L* > P* .
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CHAPTER 2. PURE EXCHANGE ECONOMY

1• Introduction

We are concerned with bundles of n commodities.

There is a finite set E of households h . Each h

has a preference relation -< of the kind described in
h

Chapter 1: in particular it is derived from a utility

function u,(x) . The preferences for the different

h e E are supposed to be entirely unrelated. Further,

we do not attach any meaning to comparisons between the

utility functions of different households h ("there

are no interpersonal comparisons of utility"). In a

later chapter we shall consider relaxing this res-

triction (when we get a branch of "welfare economics"),

but we shall see that we can get surprisingly far with

the present set-up.

We suppose that each household h starts with a

bundle of commodities w, (the initial endowment).

They exchange these amongst themselves and household h

receives a, (the allocation, or final allocation) ,

where

Z a, = I w, . (1.1)

h ~ h h " h

Our objective is to consider what allocations are most

satisfactory (in senses which have to be made precise)

to the h £ E in the light of their preference relations.

We say that an allocation a, is Pareto optimal if

there does not exist an allocation b, with

b, >r a, (all h) (1.2)
n h n

a n d , / i \ /1 -» \

£n ̂  —h (some h) . (1.3)
h
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Clearly any allocation which could be regarded as satis-

factory must be Pareto optimal. It is indeed a very

minimal condition: for example if n = 1 and there

are two households with w, = w~ = (10) then

a-. = (1) , a_2 = (19) is Pareto optimal, although it

could hardly be regarded as satisfactory.

There is an alternative definition of Pareto opti-

mal ity used by some authors (e.g. Arrow-Hahn, who prefer

the less loaded term "Pareto efficient"). This is

that there should not exist an allocation c_, with

£ h >- ah (all h) . (1.4)

h

Under very weak conditions this is equivalent to the

earlier definition. In fact if H is a household for

which (1.3) holds, then by continuity there is a

cu < b u with c^ y aTT . The difference b u - c^ can
—n —h —n u —H —n — n

n

then be redistributed among the h ^ H to give an allo-

cation £, > b, (h f H) .

There is always a large supply of Pareto optimal

allocations. Let A, > 0 (h e E) be arbitrary. The

continuous function

E Ahuh(ah) (1.5)

attains its maximum in the compact set (1.1). Any a,

which gives the maximum is clearly Pareto optimal.

A more restrictive condition on allocations was

(essentially) introduced by Edgeworth, namely the core.

Let {&,} ke a n allocation. We say that a subset

S c E is a blocking coalition for {ĵv,} if there exists

bg (s € S) such that

E b = E w , (1.6)
S ~"S S " S

b >r aQ (all s e S) (1.7)
S s S

b >- a (some s e S) . (1.8)
~ S s " S
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We say that {a } is in the core if there are no*~~n
blocking coalitions. An allocation in the core is

Pareto optimal (take S = E) . By considering coali-

tions consisting of a single household we see that core

allocations satisfy

a, yr w, (all h £ E) . (1.9)

-n h -n
There is a third notion, due to Walras. We say

that the allocation "f^u^ is competitive if there1 is a

price vector £ > 0 such that for each h the bundle

a, maximizes u(x) subject to the budget restraint
~—n -—

£X < £ W h . (1.10)

Then

. (1.11)The wording has been chosen so that it makes sense with-

out the hypothesis that indifference hypersurfaces are

convex. If we do suppose that indifference surfaces

are strictly convex, then a, is uniquely determined

by £ and the w, (and the functions u, (x) ) . Of

course if we choose £ at random and let each h maxi-

mize its utility subject to (1.10), then there is no

reason to expect that we shall get an allocation: the

condition (1.1) need not be satisfied.

Lemma 1.1. A competitive allocation is in the core.

Proof. Let the competitive allocation be {a, } corres-

ponding to price vector £ . Suppose, if possible,

that a blocking coalition S and bundles b, exist

satisfying (1.7), (1.8).

Since a, maximizes utility subject to (1.10), we

have

£b > £w (all s e S) , (1.12)
s s

£b > £w (some s € S) . (1.13)
But (1.6) implies

I pb = E £W . (1.14)

Contradiction!
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In the rest of this chapter we shall prove:

There is always a competitive equilibrium. (§3) .

If the condition of convexity on indifference hyper-

surfaces is omitted, it is possible for the core to be

empty (and so, a fortiori, there are no competitive

allocations). (§5)

In general not every allocation in the core is

competitive. (§2)

The following notion plays an important r6le. Let

E be an economy as described above, with households h

each having its preference relation -4 and initial
h

endowment w, . Let N > 1 be an integer. For each

h e E the replicated economy NE contains N house-

holds x(1/h),...,x(Nfh) of type h, each with prefe-

rence relation -< and initial endowment w, . If
h ~ n

{a., } is an allocation for E , then the allocation of

NE which gives a, to x(J/n) (1 < j < N) (h e H) is

said to be the replication of ^^ • In §4 we show

that {jib-'" ^ s competitive precisely when its repli-

cation is in the core of NE for every N .

It is convenient to prove here

Lemma 1.2. Suppose that all indifference hypersurfaces

are strictly convex. Then every core allocation of

NE is the replication of some core allocation of E .

Proof. Consider the allocation of NE which gives

a(j,h) to household x(j/n) • Without loss of

generality

a(l,h) ̂  a(2,h) ... 4 a(N,h) . (1.15)

h "~ h ~"

Put

b(h) = N"1 E a(j,h) , (1.16)
j

so {b(h)} is an allocation for E . It is easy to

see (using the strict convexity hypothesis) that

a(l,h) -< b(h) , (1.17)
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unless all the a(j,h) (1 < j < N) are equal. Thus

the coalition of the xdf n) (n e H) i s blocking un-

less the allocation {a(j,h)} is the replication of

{b(h) } . Hence if {a.(j,h)} is in the core it is a

replication of {b(h)} , which must clearly be in the

core of E .

2. The Edgeworth box

In this section, following Edgeworth, we consider

the case when there are two goods (n = 2) and two house-

holds, which we shall label A and B. We shall also

suppose, though it is not vital to the argument, that

each starts with an initial endowment of just one of

the goods, say

wA = (0,1) ; wB = (1,0) . (2.1)

We restrict attention to the case when the indifference

curves (= indifference hypersurfaces for n = 2) are

strictly convex.

If the allocation of A is

aA = (x,y) , (2.2)

then the allocation of B is

aB = (1-x, 1-y) . (2.3)

We may therefore represent both a and a by the

single point (x,y) in the unit square

0 < x < 1 , 0 < y < 1 (2.4)

(the Edgeworth box). The allocation a, is measured

from the origin in the standard way while a_B is

measured backward from (1,1). Both wA and wn are

thus represented by (0,1) .

The indifference curves for A are convex with

respect to the origin. The indifference curves for B

in the box representation are convex with respect to

(1,1) (and so concave to the origin).

It is easy to see that (x,y) represents a Pareto

optimal allocation precisely when the indifference

curves for A and B touch at (x,y) . They therefore
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Figure 3.

W

W gives the initial allocation. C is Afs indifference

curve through W . He will not agree to anything below C

because he would prefer the status quo.
The two parties will not agree to"B"

Similarly for
U , where the in-

difference curves cross, since at e.g. U they would
both be better off. The contract curve consists of
points such as V where the indifference curves touch.
A point such as T where the common tangent passes
through W is a competitive equilibrium.
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lie on a curve. If (x,y) represents a point of the

core, we require in addition that a ^ wA; an ^ wn :
-A A -A -B B -B

that is that (x,y) lies between the A- and B-

indifference curves through (0,1) . The core is thus

represented by a curvilinear arc, which Edgeworth calls

the contract curve.

We now consider the condition that (x,y) represent

a competitive allocation. It is easy to see that for

any price-vector p the budget restraints

E*A = E^A ; E^B = E^B (2#5)

are represented by the same straight line L in the

box through (0,1) . The point (x,y) maximizes

A-utility on L if L is tangential to the A-indifference

curve through (x,y) ; and similarly for B . Hence

(x,y) is a point on the contract curve at which the

common tangent to the A- and B- indifference curves

passes through (0,1) . It is left to the reader to

show that such a point always exists: we shall prove

the corresponding fact for arbitrary numbers of house-

holds and goods later.

Now, following Edgeworth, we use his box to inves-

tigate the replicated economy NE , where N > 1 is an

integer and E is the economy described above. By

Lemma 1.2 all individuals of the same type receive the

same allocation. We may thus represent a point of the

core of NE by a point (x,y) in the Edgeworth box.

It clearly must be in the core of E , but there are

now further restrictions. In fact for any r < N ,

s < N , a set S of r individuals of type A and s

individuals of type B may constitute themselves a

coalition and allocate themselves b , b , where
—A. D

rbA + sbB = rwA + swB . (2.6)

Here b , b are not, in general, represented by the

same point in the Edgeworth box, but since
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the two representative points x,, xR (say) lie on the

same line through (0,1) . Further, any two points

XA, XB collinear with (0,1) can be approximated

arbitrary closely by x., xB for suitable choice of r,s

provided that N is large enough. It follows that the

core of NE shrinks to the competitive allocations as

N increases. [There may be more than one, see

Exercise 2.] We leave the detail to the reader, as we

shall later deal with the case of arbitrarily many

households and commodities.

3. Existence of competitive allocations

In this section we prove the existence of competi-

tive allocations. The argument makes essential use of

the assumption that indifference hypersurfaces are

strictly convex.

We retain the notation of §1. Since prices occur

homogeneously we can without loss of generality restrict

attention to price vectors £ for which

I P j = 1 , (3.1)

(normalized price vectors). For every normalized p

satisfying

£ >> 0 (3.2)

and for household h there is a unique bundle £u(p)

which maximizes h-utility subject to the budget restraint

£x = pwh . (3.3)

Here w, is the initial endowment. The vector c, (p)~~n ~—n ~~
is clearly a continuous function of £ . If

E £ , ( £ ) = E w, , (3.4)

then £, (£) is a competitive allocation. This leads

to the consideration of the excess demand function

e(£) = E ch(£) - E w h . (3.5)
h h

Then

£e(£) = 0 (3.6)
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by (3.3) , and we wish to find a p with

e(p) = 0 . (3.7)

We must, however, also consider price vectors £

which do not satisfy (3.2), i.e. for which some goods

are free, and then c, (£) may not be well-defined. We

must therefore use a technical trick. Let t > 0 be

real and put

t = (t,...,t) . (3.8)

We suppose t is so large that

I w, << t (3.9)
h ~ n

but otherwise arbitrary.

Now for any £ (not necessarily satisfying (3.2))

the continuous function u, (x) attains its maximum on

the set defined by (3.2) and

x < t . (3.10)

By the strict convexity of the indifference hyper-

surfaces, the maximum is attained at precisely one

point, which we denote by £u (P) • It i-s n o t diffi-

cult to see that £^(P) depends continuously on £ .

Hence

e*(£) = E c*(£) - E wh (3.11)
h

depends continuously on £ and satisfies

££*(£) = 0 . (3.12)

We are now in a position to apply the following

Lemma 3.1. Let v(£) be an n-dimensional vector

depending continuously on £ in the set

E P j = 1 P j > 0 . (3.13)

Suppose that

£v(£) = 0 (3.14)

for all £ . Then there is a £ such that

v(£*) < 0 . (3.15)

Before proving the lemma, we show that it gives

the existence of a competitive allocation on putting

v(£) = e (p) . The hypotheses are satisfied by (3.12),

and so there is a £* with
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e*(£*) < O ; (3.16)

that is

Z £*(£*) < Z w, . (3.17)

h n h

By (3.9) and (3.17) we have

££(£*) << t (all h e E) . (3.18)

On recalling the definition of the c, (£) and the fact

that u, (x) increases with x we deduce that there is

actually equality in (3.17). Further, (3.18) shows

that £u(£*) gives the maximum of uh(x) subject only

to (3.3) (with £ = £*) , that is £^(P*) = £h(£*) *

Hence £* gives a competitive allocation, as required.

It remains only to prove Lemma 3.1. We do this

by constructing a continuous map of the simplex (3.13)

into itself and applying Brouwerfs fixed point theorem

(see Appendix B). More precisely, we define T(£) = q

by

qj = (PJ + 6J ) / Q (3.19)

where

Q = Z (p + 6 ) = 1 + Z 6 (3.20)
k K K k K

and

6. = max(v.,0) , v = v(p) . (3.21)

(This has the obvious economic interpretation: if

the good j is in excess demand, increase its price.)

By Brouwer's theorem there is a £ with T (£ ) = £* .

Then

If

If

and

P

Z
*

PJ
P
so

Z

*
j

6

*
j

(1

k

>

+

=

0

0

*
vj

z
k

0 i

6k) =

6J =

, then

, then

=>

> o ,

p

p

0

*
j
6

+

Z

k

=>

6

6

=

0

V

j

k

0

.

*
j

.

for all k

Further,

> 0 ;

(3.22)

(3.23)

and we are done.

(3.24)

(3.25)
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in contradiction to (3.14).

Addendum

The condition that the . indifference hypersurfaces

are strictly convex can be relaxed to mere convexity

by the use of Kakutanifs generalization of Brouwer's

fixed point theory [see Addendum to Appendix B]. The

set of x which maximize h-utility subject to (3.3)

is now, in general, not a single bundle £, (£) but a

closed convex set. It follows that the excess demand

function £(p) must be replaced by a closed convex

set E(£) depending on £ . On the other hand,

Kakutani's theorem gives a generalization of Lemma 3.1

in which v(£) is replaced by a set V(£) such that

pv = 0 for all v £ V(£) and depending upper semi-

continuously on £ ; the conclusion being that there

are £ and v e V(p ) such that v* < 0 .

4. Replicated economies

The main result of this section does not require

any assumption about the convexity of indifference

hypersurfaces. This increased generality can be

obtained at the cost of very little additional compli-

cation in the proof.

Theorem 4.1. Let {a, } be an allocation of E whose
—h

replication is in the core of NE for all N > 1 .

Then {̂ û  i-s competitive.

Note. Convexity of the indifference hypersurfaces is

not assumed, so "competitive" must be understood in the

more general sense discussed in §1.

Proof. For each h e E let

} (4.1)

Ah) . (4.2)

Ah , Th : so

a n d

L e t

Ah =

r h =

* £ '
Ah

: x

b e

h " h

t h e
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x e A, => x y- a., . (4.2 bis)
h n

We denote by C the convex cover of u r° , so C is

h

open (cf. Appendix A).

Suppose first that

0 e C . (4.3)

Then
2 = z Klv (K > 0, Z X , = 1) (4.4)

l<k<K K

for some K > 1 and for some

*k e r°h(k) <4-5)

with

h(k) e E (1 < k < K). (4.6)

Since the I\ are open, (4.4) remains valid if we re-

place the A, by rational numbers lv close enough to
.K. .K.

them, and at the same time replace the y, by appro-

priate _z, e rh(k) close enough to them. On multi-

plying up by the common denominator of the £^ we thus

have
0 = I LjZ, , (4.7)

l<k<K

where
r S ( k ) '

 (4-8)
and the

Lk > 0 (4.9)

are integers.

Let N > E L, and consider the replicated economy

NE . Let S be a coalition which is

the disjoint union of the sets S(k) consisting of L,

households of type h(k) for 1 < k < K . To each of

the households in S(k) we make the allocation

b k = wk + zk . (4.10)

This is a re-allocation of the initial endowments of S,

by (4.7) . Further,

b, e A^ ,. x (4.11)
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by (4.2); so

~k h^ k ) -h(k) (4.12)

by (4.2 bis). Hence S is a blocking coalition, con-

trary to the assumption that the replication of {a }

is in the core.

Thus (4.3) leads to a contradiction, and we must

have

0 / C . (4.13)

Since C is convex, there is by Theorem 1 of Appendix A

a q ^ 0 such that

q£ > 0 (all c e C) . (4.14)

We now show that q is a price vector. Let

e, = (1,0,...,0). The basic properties of -< imply that

x + ten € A° whenever x e A, and t > 0 . Hence— —1 h — n
c + te, e C whenever £ e C . On replacing c_ by

£ + te-i -*-n (4.14) and making t -> °° we see that

q, > 0 . Similarly q. > 0 (2 < j < n) ; i.e. £ is

a price vector.

Since T? c c and r, is the closure of r° (by

(1.5) of Chapter 1), it follows from (4.14) that

2£ > 0 (all c e rh) . (4.15)

By (4.1), (4.2) we have

x ^ a_h => qx > qw, . (4.16)

h

In particular,

gah > £Wh (h e E) . (4.17)
But I a, = £ w, , and so

. (4.18)

Hence the allocation "t̂ û  is competitive, corres-

ponding to the price-vector q .

Comment. Aumann has introduced a generalized economy

in which the set of households is a measure space with-

out atoms (cf also book of Hildenbrand). No assumption

of convexity is required on the preference relations

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511663024.004
Downloaded from https://www.cambridge.org/core. SUB Gottingen, on 28 Jul 2020 at 08:07:59, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511663024.004
https://www.cambridge.org/core


28

but they depend continuously, in an appropriate sense,

on h . It is shown that the core consists precisely

of the competitive allocations.

5. Non-convex preferences

In this section we sketch an example to show that

the core can be empty if the condition on convexity of

indifference hypersurfaces is omitted.

The number of goods is n = 2 . All households

have the same utility function

u(x,y) = x2 + y2 (5.1)

and the same initial endowment

w = (1,1) . (5.2)

Let N be the number of households in E .

When N = 2 it is easy to see that a core allo-

cation is (2,0), (0,2) . Note however that (in con-

trast to the convex case) there is no core allocation

in which the final allocations are the same; that is

the two households have here to agree which is to get

all of good 1 and which all of good 2.

We now indicate briefly steps to show that for

N = 3 there is no core allocation. Suppose, if

possible, that

-j = { y L j r Y ^ (1 < j < 3) (5.3)

is in the core.

(i) Suppo

is a d such that

(i) Suppose that a. > > 0 (j = 1,2) . Then there
j

" - ** -2 *

Hence at least two of a,,a2,a, are on the co-ordinate

axes.

(ii) On considering coalitions of a single member

we have

x2 + y2 > 2 (1 < j < 2) .

(iii) On considering coalitions with N = 2 , there
2 2

can be at most one j with x. + y. < 4 .
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(iv) Suppose that a-. = (a,0) , a9 = (b,0) with

a < b . Then a > 2 , b > 2, so a+b > 3 , a

contradiction.

(v) Suppose a1 = (a,0), a2 = (0,b), so

a3 = (3-a,3-b) with a < b . Then a > 2**, b > 2 and

(3-a)2 + (3-b)2 < 4 .

Hence a > 2 and a^ = (2,0)/ a_2 = (0,2) f a3 = (lfl) .

But this is not in the core since ih/^ a r e blocking

coalition. (Indeed b1 = (e,2) >* ^ ; b3 = (2-ef0) y a3

if e > 0 is small.)

Further reading

K. Arrow and F.H. Hahn. Competitive analysis. Holden-

Day; Oliver and Boyd. 1971.

F.Y. Edgeworth. Mathematical Psychics. Kegan Paul,

London. 1881. Reprinted as: Series of reprints of

scarce tracts in economics and political science. No.10.

London School of Economics, 1932.

W. Hildenbrand. Core and equilibria of a large

economy. Princeton Univ. Press, 1974.
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Chapter 2 Exercises

1. Two traders deal in goods labelled 1,2 . The

first has initial endowment (0,1) and utility
2 2

function x + 3xy + 2y : the second has initial

endowment (1,0) and utility function xy . Find

the contract curve and the point of competitive

equilibrium.

2. Show that there may be several distinct competi-

tive equilibria, even when the indifference curves

are strictly convex.

[Hint. Use the Edgeworth box and consider the

condition that a point on the contract curve is a

competitive equilibrium.]

3. Generalize the theory of the Edgeworth box to the

case where the two agents A,B have initial en-

dowments w ,wc which may contain both goods. If

w +w = (1,1) , show that all the contract curves

are portions of a single curve (the extended con-

tract curve).

4. For a given utility function u(x,y) an Engel

curve (NOT the red angel) is the locus of the

bundles (?,n) chosen for the budget px+qy = B ,

where the prices p,q are fixed but B varies.

Defining the marginal propensity to consume

good 1 as d^/dB , show that the slope of the

Engel curve is the ratio of the two marginal pro-

pensities to consume. If u(x,y) is continu-

ously differentiable and has strictly convex in-

difference curves, show that there is precisely

one Engel curve through each point (x,y) >> (0,0).

5. In an Edgeworth box consider the Engel curves

EA(p1,p2), ER(p1,p2) of the two agents A,B for

the pair of prices (p., ,p2) . Show that they

intersect (if at all) on the extended contract
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curve C , and that C lies between them.

Country A produces only manufactured goods and

country B only food. The rates of production are

constant. They trade only with each other and

achieve a competitive equilibrium with respect to

utility functions u (x,y) , u (x,y) where x,y

are the rates of consumption of manufactured goods

and food respectively. Let p , p be the

equilibrium prices of manufactures and food (in

terms of some trading cur]

to be A's terms of trade.

terms of some trading currency), and define PM/PF

Now suppose that A gives B a fixed (small)

annual amount of manufactures as aid, but that

otherwise they trade as before. Show that A's

terms of trade will deteriorate (i.e. diminish)

precisely when

C(A,M) > C(B,M)

C(A,F) C(B,F)

where C(A,F) is A's marginal propensity to con-

sume food (at the equilibrium quantities and

prices), etc.

[Hint. Consider the Engel curves through the

equilibrium point. Cf. P.A. Samuelson, Economic J.

62 (1952), 278-304 = Collected Papers II,

985-1011.]

Let "f̂v,̂  ke a Pareto optimal allocation for the

economy E with convex indifference hypersurfaces.

Show that there are prices p such that a,

maximized h-utility subject to the budget con-

straint

To what does this correspond for the Edgeworth Box?

[Note It is not, of course, claimed that

Hint. In the notation of §4 show that 0 is
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is not in the convex cover of the union of the

Ah^n -]

(Arrow-Debreu economy. Bowdlerised version.) In

this economy, in addition to the finite set E of

households h (with the properties described in

§1) there is a finite set J of producers j .

Each producer j may take a bundle of commo-

dities x (the input) and transform it into a

bundle jz (the output) depending on x and j .

The set Y. of ^ = _z - x (the net product) is

j f s production set. We suppose that Y. is

strictly convex, closed and bounded, and that

0 € Y . .

Let w, (h e E) be the initial allocations

of the households, and suppose that producer j

chooses net product y. e Y. (j € J) . Then an
allocation b, to households is feasible if—n

I b h - J wh • z Zj .

We suppose, further, that the producers are

owned by the households. Household h owns a

share 8, . of producer j , where 0, . > 0 and

E 6, . = 1 (all j € J) .
h nj

Under prices £ , producer j chooses

y_. e Y. so as to maximize his profit £^ . . Then

household h chooses bundle x, to maximize its

utility subject to the budget constraint

+ E
hj PY. .

Show that £ can be chosen so that the allocation

x, is feasible.

[Hint. §3. References K.J. Arrow and G.Debreu,

Existence of an equilibrium for a competitive

economy. Econometrica 2 2 (1954), 265-290 :

G. Debreu, Theory of value (Yale University Press,

1959), §5.7 : Arrow-Hahn loc.cit. ]
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Fill in the steps of the following argument which

shows that, when the number of households is large

compared with the number of commodities, every core

allocation is in some sense nearly competitive. We

need not suppose that the indifference hyper surf aces

are convex. Let w, be the initial endowment and

a, a core allocation. Denote by r° the interior

of the set defined by (4.2), and put

Ah = rh u { ° } *
(i) E A, cannot contain an x < 0. [For

otherwise there is a coalition S c E and

b g e T° (s € S) such that E bg < 0 . Show that

S blocks U h>.]

Now let k be any bundle such that

wh < k (all h £ E) .

(ii) The convex cover con(E A,) cannot con-

tain an x < -nk , where n is the number of

commodities. [For otherwise by the Shapley-Folkman

theorem (Appendix A, Exercise 2) there are

j,h e con(Ah) with E t^ < -nk and _£h / Ah for

at most n households h . Replace these ex-

ceptional L. by 0 and apply (i).]

(iii) There is a price vector £ with

E p . = 1 such that

x e E A, => £x > -nK ,

where K = max k. • [Apply the separation

Theorem 2 of Appendix A to (ii).]
(iv) E pa. - pw, < 2nK .

h D h

[Let S be the set of h with £a, < JDW, . Then

E (a - w ) is in the closure of E A, . But
s -s -s n

E ah = E wh .]

(v) Let

= inf (gx - £Wh) (x >*
h

Then
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Ely, I < 2nK .
h h

[For y, < £(a, - w, ) . Let S be the set of h

with y, < 0 . Argue as in (iv).]

[Comment. The point is that the estimates are

independent of the number of households, provided

only that w, < k .

Reference. R.M. Anderson. An elementary core

equivalence theorem. Econometrica 4 6 (1978),

1483-1487.]

10. Deduce Theorem 4.1 from the preceding exercise.

11. Hypotheses and notation as in Exercise 9, except

that the allocation "f̂ û  is n°t necessarily in

the core. Suppose, however, that it is not

blocked by any coalition of < M members, where M

is some number less than the number N of house-

holds. Show that the conclusions of (iv),(v)

continue to hold if 2nK is replaced by 2nHK ,

where H is the least integer such that MH > N .

[Hint. Partition the households into M sets

I (1 < m < M) , each with at most H members.

Put 0 = u A, (h € I ) and show that (iii) holds

with E 0 instead of E A, . Let T be any set
m h u

of < M households no two of which are in the same

I . Show that (iv), (v) hold (with the samebound 2nK) if £ is replaced by the sum over the

h e T . But E is the union of at most H such

T . Reference. A. Mas-Colell. A refinement of

the core equivalence theorem. Economics Letters 3

(1979), 307-310.]
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CHAPTER 3. THEORY OF THE FIRM

!• Introduction

In this chapter we make a further stride towards

realism and consider a situation in which there are

firms which can create certain goods (outputs) by the

use of other goods (inputs).

We operate in a monetary economy of an especially

simple type. There is a single good (money) which can

be freely exchanged. It can be neither created nor

destroyed, and it does not enter into any of the manu-

facturing processes considered. All prices are in

terms of money. We start by considering only the mone-

tary cost of the output, assuming that the prices of the

inputs are constant.

2. Supply and demand

We now consider a single good which is traded

between a number of producers and consumers. We

suppose that all transactions take place at the same

price. At any price p there is a certain demand d(p)

from the consumers. We naturally suppose that d(p)

decreases as p increases and, for simplicity, that d(p)

is continuous. Similarly, at any price p there is

the supply s(p) , the amount that the producers will

produce for price p . Here s(p) increases with p

and is supposed continuous. Under reasonable con-

ditions there is then a unique price P which equates

supply and demand:

d(P) = s(P) = Q (say) . (2.1)

Economic forces are supposed to lead to a situation at
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which the price is P and a quantity Q is produced

and consumed. In what follows we suppose s(p),d(p)

are graphed with p on the y-axis.

Figure 4.

s(p)

Supply and demand ("Marshall's scissors")
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Now, for a moment, drop the assumptions that all

transactions are at the same price and suppose, instead,

that the consumers pay for each additional amount of

the good the maximum price that they are willing to pay.

Then the total they would pay for the quantity Q

would be

fQ
Tr(q)dq , (2.2)

' o

where p = iT(q) is the inverse function of q = d(p) .

In the graphical representation (2.2) is the area under

the curve d(p) . The integral (2.2) is in some sense

the value of the quantity Q to the consumers. Now

reverting to the original supposition that all transac-

tions take place at price P , we see that the con-

sumers have benefited by the consumers' surplus
rQ

Tr(q)dq - PQ
' o

rQ
{iT(q)-P}dq

> 0 . (2.3)

Analogously there is the producersf surplus

fQ
PQ - Q(q)dq

> o

fQ

(P-a(q))dq

> 0 , (2.4)

where p = a(q) is the inverse of q = s(p) .

The preceding analysis (due to our Alfred Marshall)

depends on the tacit assumption that (in defining

s(p), d(p)) we can change the price of our one good

without affecting the rest of the economic situation -

the changes are ceteris paribus (other things being

equal). But in an interdependent economy one cannot

change the price of one good while keeping everything
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else (prices, quantities traded, of other goods) all

fixed. In his definition of s(p), d(p) Marshall did

not specify which were the other things to be kept

equal, and there is contention amongst economists as to

what he meant, and what he should have meant. If the

good under consideration plays a minor part in the

economy (e.g. bubble-gum) then it is reasonable to as-

sume that change in its price has only minimal reper-

cussions and the above is meaningful; but if it plays

a major part (e.g. raw steel) then in any case a more

sophisticated analysis is required. (Even if we can

attach a meaning to TT (q) for small q , the integral

defining the consumers1 surplus might well diverge.)

As a digression we now consider the effect of

charging a tax 6 > 0 on the producer for every unit

of the good produced. If p is the price paid by the

consumer, the price received by the producer is now

p - 6 . Hence the price P* and quantity Q* which

equates supply and demand are now given by

d(P*) = s(P*-6) = Q* . (2.5)

Clearly

Q* < Q (2.6)

and

P*-6 < P < P* , (2.7)

where the signs of equality can hold only on the ex-

treme assumption that s(p) or d(p) is locally

constant. Further, the cost of the tax is in effect

divided between the producer (who now receives only

P* - 6) and the consumer (who pays P* ) in a way which

depends on the curves s(p), d(p) and which would have

been precisely the san\e if the tax had been imposed on

the consumer. If 6 is small and s(p), q(p) have

continuous derivatives, it is easy to verify that

P* = P+sl6/(si+|df |) (2.8)

P*-S = p-ld1 U / f s ' + ld1 I) , (2.9)
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where s1 is the derivative.

Finally, it is clear from a diagram that in the

taxed situation the sum of the three items (i) con-

sumers1 surplus (ii) producers1 surplus and (iii) the

tax revenue $Q* is less than the sum of (i) and (ii)

in the untaxed situation.

3. Perfect competition

We consider an industry which manufactures a cer-

tain good. There are a large number of small firms

which act entirely independently of each other. No

single firm can make more than a very small proportion

of the total amount of the good which is traded. Under

these circumstances, the decision of the individual

firm has only a negligible effect on the going price

p of the good: if it tries to sell at a price p > p

it will find no buyers, but if it sells at a p < p it

can dispose of as much as it can make. In other words,

on the scale of the individual firm the demand curve

d(p) is a horizontal line: d(p) = 0 for p > PQ but

d(p) = °° for p < p . (This is sometimes taken as

the definition of a competitive industry.

For an individual firm let C(q) be the cost of

producing a quantity q of the good per unit time (year).

We suppose that C(q) is increasing and, where neces-

sary, that it is continuously differentiable. There

is a maximum amount q^ which the firm can produce so

we put C(q) = °° for q > q^ . In general, the fixed

cost C(0) is strictly positive. We call C(q)-C(O) the

variable cost. We do not need to suppose that the

function C(q) is the same for all firms in the

industry.

If the firm makes a quantity q and sells it at a

price p it will make -a profit

R(q*p) = pq - c(q) (3.1)

if this is positive, or a loss - R(q,p) if R(q,p) is

negative. The firm is supposed to choose q so that
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at the going price p it maximizes R(q/P ) : that is,

it makes as large a profit as it can or, if it cannot be

profitable, it minimizes its loss.

We now look at the industry in the medium term. A

firm which cannot break even will ultimately go out of

business. On the other hand, if there is a firm which

can make a strictly positive profit, it will be worth

the while of an entrepreneur to build a carbon copy and

enter the industry. The demise or entry of a single

firm will have only a minimal effect on the going price

p , by our hypothesis that all firms are small. If

many firms go bust or are created, the going price p

may change (being determined by demand and supply for

the industry as a whole) but it is plausible that the

industry will move towards a situation in which every

firm breaks even but none can make a profit.

We have thus justified

Axiom 3.1. In a competitive industry with going price

p an individual firm with cost function C(q) manu-

factures a quantity q > 0 such that

po = C ( qo ) / qo = i n f C^/V • (3-2)

q
Further,

Po = C'(qQ) . (3.3)

For (3.2) just expresses that R(q,Po) ^ 0 , with

equality at q ; and (3.3) holds since R(q,p ) has

a maximum at q .

Corollary. In a competitive industry the producers1

surplus is 0.

The "invisible hand" of competition thus confers

all the benefits upon the consumer. It is one of the

guiding principles of economics that, even if an indus*-

try is not competitive in the sense defined above, it is

working to the greatest benefit of the community if it

satisfies (3.3) :

Principle 3.1. Consider an industry producing a good
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in response to demand. Let C(q) be the cost of pro-

ducing a quantity q and let ir(q) be the price at

which demand consumes q (as in §2). Then the benefit

of the community is maximized if the quantity q pro-

duced satisfies

TT(qo) = C'(qQ) . (3.4)

We have called this a "Principle" because the ex-

pression "benefit of the community" remains undefined

and because if we do define it (in a variety of ways) we

shall find that the conclusion of the Principle follows

from our other assumptions.

We can justify the Principle in the context of §2

as follows. Suppose that the amount actually produced

is Q . Then TT(Q) is the value of a further unit of

the good. It costs C1(Q) to produce. If

TT(Q) > Cf(Q) then it is worthwhile to produce the extra

unit: but if TT (Q) < C'(Q) it would have been better

to have produced a unit less. Alternatively, the net

benefit to the community of producing Q units is

Q
TT(q)dq-C(Q). . (3.5)

o

If this is maximized at Q = q , then (3.4) holds.

We digress to give a further situation in which

Principle 3.1 is verified. Suppose that there are n

goods l,...,n where good j is manufactured by an

industry with cost function C. (q) (1 < j < n) . Suppose,

further, that there is a utility function u(q) where

H = (q-if • • •/<5n)
 i s a nY bundle of the commodities. Sup-

pose that a total money resource M is available. Then

there is greatest utility if

u(qlf...,qn) (3.6)

is maximized subject to

£ Cj(q^) = M . (3.7)
Hence the optimum vector q satisfies
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(3.8)

where u. = 8u/8q. and X is a Lagrange multiplier.

Now suppose in a market economy that the goods are

traded at a price vector p . Then the consumer will

in fact maximize subject to

£ Pjqj = M , (3.9)

and so obtain a bundle q° with

(3.10)

for some multiplier y . Now suppose that one of the

industries, say the first, is competitive, and hence

P-, = C-! (q-,) . Then we can only have q = q* if all

the other industries have p. = C1. (q.) ; i.e. if they

produce in accordance with Principle 3.1.

4. Monopoly

We now consider a good where there is a single

supplier who has a (natural or legal) monopoly. We

suppose that he is subject to the law of diminishing

returns:

C (q) > 0 , C"(q) > 0 , (4.1)

or, equivalently, that C(q) is increasing and convex.

As before, iT(q) is the price at which the demand is

q , and T\ (q) decreases with q .

The profit on a production of q is thus

R(q) = qTT(q) - C(q) : (4.2)

and the monopolist is supposed to choose q so as to

maximize this, say at q . (The hypotheses do not

imply that q is unique. ) Put

P m = *(qm) , (4.3)

the monopolist's price. Equating the derivative of

(4.2) to 0 we obtain

> C'(qm) , (4.4)

if we ignore the very exceptional possibility IT1 (q_) =0,

i.e. that the demand curve is locally horizontal. The
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monopolist sells at above his marginal cost of pro-

duction. If he were to lower his price he could sell

more and still make a profit on the extra production:

but this would be more than offset by the decreased

profit on his original output q .

The competitive quantity q and price p are

obtained by equating price to marginal cost:

Pc = 7T(qc) = C'(qc) . (4.5)

Since C1 (q) - iT(q) is an increasing function of q ,

on comparing (4.4) and (4.5) we obtain

qm < qc , (4.6)

and hence

Pm > Pc • (4.7)

Hence under monopoly the consumers1 surplus is re-

duced, as also is the total benefit to society in the

sense discussed at the end of the last section. The

payment

qm(Pm-Pc) (4.8)

which the monopolist receives because he charges p

rather than p is known (somewhat misleadingly) as his

economic rent. A justification for the term is that

economic rents tend in practice to be converted into

actual rents which are part of the cost of production.

For example, a manufacturer with a patent enjoys an

economic rent. If, however, he permits other manu-

facturers to use the patent subject to royalty, then

for them the royalty payment is just one of the costs

of production.

It should perhaps be remarked explicitly that in

the monopoly situation there is no reason to expect that

the profit R(q ) is zero. Both R(q ) > 0 andc c
R(q ) < 0 are compatible with our assumptions (and,

presumably, can occur in practice). If R(q ) > 0 ,
c

the dirigiste might regard it as reasonable to compel the
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monopolist to increase production from q to q :

but if R(q ) < 0 a subsidy would also be required.

5. Duopoly

Here there are precisely two producers, labelled

1,2. Each has a convex cost function C. as in §4.

The total supply is

q = q-L + q2 , (5.D

where firm j produces q. . The price which equates

this to the demand is ir(q) , where u is as in §4.

The two firms thus obtain profits

R. (qlfq2) = q_j^(q1
+q2) -

 cj(q-j) • (5.2)

Cournot, who was the first to discuss the problem,

assumed that each producer would adjust his output to

maximize his profit on the assumption that the other pro-

ducer would keep his output fixed. If this leads to a

stable situation, it must satisfy

8Rj(q1,q2)/8qj = 0 (j = 1,2) . (5.3)

Cournot1s solution assumes that business men are not

very intelligent. If producer 1 makes a small change
2

6 in q.. he suffers only a loss 0(6 ) , but in general

he imposes a change of order 6 in R2 . If now pro-

ducer 2 reacts in the Cournot way by adjusting q2 to

maximize R2 , then (if 6 was wisely chosen) producer

1 will be better off than at the Cournot point.

Later workers assume that the producers will somehow

gravitate to the core. A point (q.,qJ is in the core

if for every other (q,,q2)

Rj(qlf<q2) < R j ( q l / q 2 ) (5.4)

for at least one j . There is a representation very

similar to the Edgeworth box. If q, ,q2 are plotted

as cartesian coordinates, then (q./q2) is in the core

if the two curves
R^(q1/q2) = const., (5.5)

which pass through it, touch. The points of the core
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Figure 5.

Duopoly. Here are curves of equal profit for

The point C (where one tangentj (= 1,2) .
is horizontal and the other vertical) is a
Cournot point and B (where two curves touch)
is a point of the core.
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form a contract curve. The particular point on the

contract curve which is attained is supposed to depend

on the tactical skill of the producers and on adven-

titious circumstances in the process of reaching

equilibrium.

If the two producers are able to cooperate, they

have a monopoly position and will choose q, ,q^ so as

to maximize the total profit

R1(q1#q2)
 + R

2(
(3i^2) *

This gives a point of the core, but in general there

will be others.

6. Oligopoly

This is when the number of producers is sufficient-

ly small that the decision of an individual producer

about outputs has an appreciable effect on the price

which matches supply and demand. In general, the situ-

ation can be complicated, particularly if the producers

are allowed to cooperate or to form coalitions to a

greater or lesser extent. We mention two general

points.

(i) Suppose that the producers are not allowed to

cooperate. It is observed in practice that changes in

price are infrequent in response to changes in demand or

other circumstances. In other words, each producer

acts as though his demand curve has a discontinuity of

slope at the going price. If he were to raise his

price, the other producers increase their market share

by keeping their prices fixed. On the other hand, if

he were to lower his price, the others would be forced

to lower theirs so as to maintain their share, and the

advantages would be diminished.

(ii) Suppose that there is free entry to the

industry: that is, an entrepreneur is at liberty to

build a factory and start manufacturing the good. This

is certainly profitable if the going price is P and
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the cost function C(q) of the new factory is such that

it can make a profit on the portion of the demand curve

which is not met at price P : that is, with a demand

curve

0 (p > P) .
1 *dx(p) =

d(p) - d(P) (p < P)
(6.1)

It is in the interest of the existing producers to

charge a price P sufficiently low that new entrants

are inhibited. This limits the extent to which they

can exploit their oligopolistic position. The pheno-

menon is known as stay-out pricing.

7. Factor costs

Hitherto, we have discussed the cost of producing

a good as given in money terms. We now analyse the

cost in terms of the various goods which may be used as

inputs which we label l,...,n . In general, a given

quantity x of output may be obtained from several

different bundles of inputs y_ (more labour or greater

use of materials, the mix of skilled and unskilled

labour, different proportions of alloys in steel, etc.).

The possibility set Y is the set of

(x,y_) £ Rn+1 (7.1)

such that the given firm can produce x of output from

the bundle y_ of inputs. It is usual to suppose, at

least for most industries, that the possibility set Y

is convex (Law of diminishing returns in the substi-

tution of one input for another) and we shall assume

this. [If Y is not assumed convex then some of the

argument can be modified by using its convex hull.] A

point (x,y) e Y is efficient if there is no ^* < y_

for which (x,y_ ) e Y . We suppose that the firm

chooses only efficient points and that these lie on a

hypersurface

x = g(y) . (7.2)

Clearly x is an increasing function of y_ . The
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hypothesis that Y is convex implies that g(y_) is a

concave function (i.e. that -g (y_) is convex). In this

section we suppose that g(%) is strictly concave. This

implies, in particular, that for any y_ > 0 the function

g(X^) decreases with X , that is that there are

decreasing returns to scale. The case of constant re-

turns to scale (i.e. g(yj homogeneous of degree 1) re-

quires some modifications of the argument but can be

dealt with similarly. If there are economies of scale

(increasing returns to scale) then the possibility set

Y is no longer convex and the situation becomes en-

tirely different (cf. Chapter 4,§4). We shall also

assume that g (y_) is continuously dif ferentiable to the

extent that the context requires.

Suppose that the price r of the output and the

prices £ of the inputs are given. If the firm pro-

duces x output from inputs y_ then its profit

(ignoring fixed costs) is

rx - £y . (7.3)

The firm maximizes this, say at (5,_n) • P u t

R = R(r,£) = r? - £n. (7.4)

Clearly the hyperplane

rx - py_ = R (7.5)

is a tac-hyperplane to x = g (y_) at (5,n_) ; we have

? = gCn) (7.6)

(the point (£,n_) is efficient); and

gj(n) = PjA , (7.7)

at least if n. > 0 . Here, as usual,

gj(Y_) = 3g/3Yj . (7.8)

The equation (7.7) has an obvious economic inter-

pretation. The function g . (y_) is the marginal

productivity of the input j .

The investigation of the effect of changes in the

prices r, £ is very similar to the investigation of an

indifference hypersurface in Chapter 1, §3, so we can be
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brief. Let (r*,£*) and (r°,£°) be two sets of prices

and let (£*,_n )/ (C°/H°) be the corresponding values

of (£,,r\) . The definition of (?,n) implies that

- £°n°
and hence

(7

( 7 .

( 7 .

a t

( 7 .

. 9 )

10)

11)

a

12)

There is

(r*-r°) (?*-C°) - (£*-E°) (n*-n°) >- ° •
In particular, on varying only one of r or

time, (7.11) implies that

H/Br > 0 ; 9r]j/3Pj < 0 ,

whenever the differential coefficients exist,

an obvious economic interpretation.

If R is defined by (7.4), we have

dR = (rd£-£dj2) + (?dr-nd£)

= 5dr-nd£ , (7.13)

since (7.5) is a tac-hyperplane. This is a perfect

differential, so

(7.14)

and

. (7.15)

If the common value (7.14) is positive, then inputs i,j

are substitutes, otherwise they are complements.

By (7.4) we have

= E g. (n)3n-/9r ; (7.16)

and so

3nV9r > 0 (7.17)

for at least one j , by (7.12). Again there is an

obvious interpretation. One can however construct

examples (even with n = 2) when (7.17) does not hold

for all j : which is, perhaps, counter-intuitive.

In conclusion, we note that the analysis can

readily be extended to cover the case of an industry

which produces several outputs, whose prices can vary
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independently (e.g. the sheep industry produces wool and

mutton) on the assumption that the production set is

convex. It is convenient to take the hypersurface of

efficient points in the shape

f (x,y_) = 0 ,

where x is the bundle of outputs and y_ that of

inputs. The details are left to the reader.
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Chapter 3 Exercises

1. The cost of running the rail service from Cambridge

to London is independent of the number of passen-

gers. The railway company fixes the price of

first and second-class tickets so as to maximize

its revenue. Consumer research indicates that

there are four types of potential passenger. Their

numbers and conditions for travelling first and

second class are given below, where p. is the

price of a j-class ticket (in £).

Class Number
Will travel
First if

Will travel
Second if

450 p1<p2+4 and Not First and

Pl<12 p2<7

40 Pi £ Never

900 .^P^8 Not First and

p2<8

200 p,<p <6 Not First and

P2<6

(i) Show that the Railway will choose p, = 12,

P2 = 8.

(ii) A Labour government imposes a tax of £7

on a First-class ticket but no tax on a Second-

class ticket. Show that the Railway will reduce

the price of both First and Second-class tickets,

to p., = 11, p2 = 6 respectively.

[Edgeworth Paradox. Hotelling, J.Polit.Econ. 40
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(1932) , 577-616. ]

In the notation of §4 examine whether a monopolist

can be induced to adopt the competitive level of

output by imposing a tax A + Bq where q is his

output and A,B are appropriately chosen constants.

Two duopolists are engaged in the production of

mineral water. It costs nothing to produce. The

price at which it can be sold is IT (q) = 1-q ,

where q = q-. + q2
 a n d ^i'^? a r e t h e < 3 u a n t i t i e s

produced by the two duopolists.

(i) Find their total profit if they combine

and act monopolistically.

(ii) Find the profit of each at the Cournot

point.

(iii) Find the "contract curve".

("Le Chatelier principle".) Notation as in §7.

Let (£*,_n*, correspond to prices (r*,£*) . Con-

sider also the situation M in which the price p

and the quantity y of the n-th good are con-

strained by p = p* , y = n . Show that

5/ ^ 0 ,

where M refers to the modified situation, and

where both derivatives are taken at (r,£>) = (r ,£*) .

[Hint. show that RM(r,£>) < R(r,p) on PR = p* ,

and consider first and second derivatives with res-

pect to r . References: Samuelson Collected

Papers vol.1 and his Nobel Prize speech, Amer.Econ.

Rev. 62 (1972), 249-262.]

In the notation of §7 construct an example with

n = 2 for which

0 >

6. (i) An industry A produces n goods

("intermediates") which are used by a second indus-

try B to produce a consumption good whose price
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is fixed. The intermediates are neither used nor

produced by any other industry. Suppose that the

cost to A of producing a bundle x of inter-

mediates is v(x) , where v is convex (e.g.

v(x) = EC.(x.) , where the C. are convex). Sup-

pose industry B produces consumption good of

value u(x) from bundle x , where u is concave.

Let p be the prices at which industry A sells

the intermediates to industry B , so that they

maximize

RA = £x - v(x) , RB = u(x) - px

respectively. Show that supply and demand lead

to the selection of a bundle y_ of intermediates

which maximizes

u(^) ~ v(y_) ;

and that

Pj = uj (Z) = vj (Y.) '

where u.,v. are partial derivatives.

(ii) Suppose that government exacts a tax t.

on intermediate j (1 < j < n) . Show that the

industries will choose a bundle of intermediates

JZ to maximize

u(z:) - v(z) - t_z

Show, further, that the sum

profits of A + profits of B + tax revenue tz_

-*-s al w aY s strictly less than the sum of the profits

of A and B in the untaxed situation. Show

that the result continues to hold if some or all of

the intermediates are subsidized rather than taxed.

(iii) Suppose that government imposes a Value

Added Tax at the same rate on both industries.

Show that the total of tax revenue and the profits

of A and B is equal to the sums of the profits

of A and B in the untaxed situation.

(iv) Suppose that there are 2 intermediates.
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Show that the imposition of a small (infinitesimal)

tax on the first intermediate (but no tax on the

second) may either raise or lower the price of the

second intermediate. Find conditions on the

first and second derivatives of u,v at y_ which

ensure that the second price is lowered. Consider

also the first price (both before and after tax).

[Hotelling. J. Polit. Econ. 40 (1932), 577-616.

For (ii) cf. §2: for (iv) cf. Exercise 1.]

The elasticity e at x of a function f(x) is

defined to be |d log f(x)/d log x| at x

Further, f(x) is elastic or inelastic according

as e > 1 or e < 1 . If the demand for a good

at price p is d(p) , show that the revenue

pd(p) increases or decreases as p increases

according as whether d(p) is inelastic or elastic.

Consider the following simplified version of inter-

national trade. There are two countries A,B

whose units of currency are called respectively the

alpha and the beta. The rate of exchange is p

alphas for one beta. Good 1 is produced only in

A and consumed only in B ; contrariwise good 2

is produced only in B and consumed only in A .

(i) Suppose that A can produce any quantity

of good 1 at a price of p., alphas a tonne. Let

£, be the price-elasticity of demand for good 1

in country B (where the price, of course, is p-,/p

betas). Similarly B can produce any quantity

of good 2 for P2 betas a tonne and e- is t n e

price-elasticity of demand for good 2 in A .

Suppose, also, that the trade is in equilibrium:

that is

P1x1 = PP2X2 ,

where X. is the amount of good j traded. If

now the rate of exchange becomes p = p(l+6) ,
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where 6 > O is small, show that country A has

a surplus or deficit in the trade according as

e-. + e2 > 1 or e, + e2 < 1 .

[Note. This is known as the Marshall-Lerner

condition.]

(ii) Instead of supposing that A produces

any quantity of good 1 at a fixed price, suppose

that there is a price-elasticity n, of pro-

duction. Show that the price (in alphas) at which

good 1 is traded has an elasticity e-. / (s-> +ru ) as

a function of the exchange rate p , and find the

elasticity of the quantity X-. traded.

(iii) As in (i), except that good j has

elasticity n. of production. Show that, when p

increases slightly, the country A moves into sur-

plus or deficit according as ^T+^O > ^ o r

Al+X2 < X ' w h e r e Xj = e

[Note. (i) is the case n^ = ^2 = °°# ̂

(tedious but not difficult). A firm makes a good

Z from outputs X,Y . Suppose that the quantity

z of Z obtained by use of quantities x,y of

X,Y is

z = f(x,y)

where there are constant returns to scale (i.e.

f(x,y) is homogeneous of degree 1) but f(x,y) is

strictly concave on x+y = 1 . Let X,Y,Z have

prices p,q/r respectively.

(a) For given p,q show that the firm will

adopt a fixed ratio x/y of inputs. Show,

further, that the elasticity of x/y in terms of

p/q is given by

fx(x,y)f2(x,y)
0 = f (x,y)f12(x,y) '

 (i)

where the subscripts denote partial derivatives.

Show also that
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p = rf 1 ; q = rf 2 . (ii)

(b) Suppose that the industry is competitive.

Show that

rz = px + qy . (iii)

Under small changes of demand or supply (affecting

p,q,r,x,y,z but not the function f ) show that

rdz = pdx + qdy (iv)

and

zdr = xdp + ydq . (v)

Now suppose that the price-elasticity e of

supply of Y is given. We want to find the

price-elasticity of demand X of X in terms of

the price-elasticity of demand n of Z .

(c) Deduce from (v) that

n rdz = X pdx - e qdy . (vi)

(d) By differentiating the second equation

in (ii), show that

where

n rdz = c pdx - 0qdy (vii)

( 1 - K ) 6 = 1/e + K/a , (viii)

K = px/rz (ix)

and a is given by (i) .

(e) Deduce from (iv) ,(vi) , (vii) that

X = {c(n+e) + Ke(n-a) }/{n+e-K(n-a) } . (x)

(f) According to Marshall and Pigou:

"I. The demand for anything is likely to be

more elastic, the more readily substitutes for

that thing can be obtained.

II. The demand for anything is likely to be

less elastic, the less important is the part

played by the cost of that thing in the total cost

of some other thing, in the production of which it

is employed.

III. The demand for anything is likely to be
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more elastic, the more elastic is the supply of

cooperant agents of production."

IV. The demand for anything is likely to be

more elastic, the more elastic is the demand for

any further thing which it contributes to produce."

Interpreting this to mean that X increases

with a,K,e,n respectively, show that I,III,IV

are true in this model but that II is true pre-

cisely when n > a .

[Hicks, The theory of wages.]
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CHAPTER 4. WELFARE ECONOMICS

1• Introduction

Hitherto we have considered the actions and inter-

actions of agents (persons, firms) each of which seeks

to maximize its own utility. This may lead to situ-

ations which (by fairly general consent) are not optimal

for society as a whole. Any attempt to formalize such

goals as "the greatest happiness of the greatest number"

leads to comparisons of the utilities of different

persons. More generally, some economists have intro-

duced a social utility function which measures the

welfare of society as a whole (or of a specified sub-

society, e.g. a family). This may depend only on the

utilities of individuals (e.g. their sum) or may be more

complicated in structure.

The notion of social utility is distinctly more

rarified than that of an individual's utility. It is

perhaps not too grossly unrealistic to suppose that an

individual, confronted with a number of alternatives,

can put them in order of preference. It is much more

questionable to think of an order decided by a society

as a whole. Indeed, "Arrow's impossibility theorem"

shows, subject to some very innocuous-seeming axioms,

that it is impossible to construct a social ordering

from the preference orderings of the individuals in the

society.

Nevertheless, one may suppose that, by some sort

of consensus or otherwise, a social utility function is

given. An individual agent acts, however, to increase

its own utility and this may well decrease social
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utility. It may be regarded as a duty of Government

to maximize social utility either by direct action or

by manipulating market forces. Here it has to be borne

in mind that government action may have its costs (e.g.

employment as tax collectors or safety inspectors of

people who could otherwise be productively employed);

and these have to be taken into account in assessing

the effect of government action on social utility.

Rather than pursue these generalities further, we

discuss a number of simple concrete situations. At the

end we prove a form of Arrow's impossibility theorem.

2. Public good

This is a good which benefits all, whether or not

they have paid towards its production (e.g. weather

forecasts). The problem of ensuring that all contri-

bute fairly to the cost of producing an optimum amount

of public good is picturesquely called the free rider

problem.

We take a very crude model. Consider two goods

1 a public good and 2 a private good. Each house-

hold has a utility function

uh(X,yh) , (2.1)

where X is the amount of the public good and y, is

the household's quantity of the private good. Let

P-i rP2 ke t n e prices of the two goods (supposed indepen-

dent of the demand), and suppose that each household h

has a budget B, from which it makes a contribution

x, . Then

X = Exh (2.2)

and

?lxh + P2^h = Bh • (2'3)

The individual household h may be expected to pick

x, ,y, subject to the budget constraint (2.3) so as to

maximize (2.1) under the supposition that other house-

holds k =[ h will keep their contributions unaltered.
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It will therefore select xh'Yh s o that

uhl(X,yh) : uh2(X,yh) = p± : p 2 , (2.4)

where uhi'uh2 a r e **ne Partial derivatives.

This will, however, mean that too little of good 1

is produced. To avoid the introduction of a social

utility function, let us suppose for simplicity that all

households have the same utility function and the same

budget constraint, and also that they all contribute the

san\e amount x of the public good. Then each will

have a utility

u(Nx,y) , (2.5)

where N is the number of households and

pxx + p2y = B . (2.6)

Now maximization of (2.5) subject to (2.6) gives

u1(Nx,y) : u2(Nx,y) = p±/N : p 2 . (2.7)

The individual household should thus be induced to act

as though the price of the public good is P-./N .
3• Service subject to congestion

We consider a good where the use by one household

reduces the utility of the good to other households (e.g.

telephone conversations, where congestion makes the

service less efficient).

Let 1 be a good of this type and let 2 be a

normal good (or, say, money). We suppose that the

utility to household h of quantities xh'vh o f 9 o o d s

1,2 respectively is

uh(xh,yh,X) , (3.1)

where

X = E x, (3.2)

k k

is the total amount of good 1. Here (3.1) is a de-

creasing function of X (for fixed Xh/Vh^' b u t f o r

fixed X it is a utility function of the usual type.

Let p i rp 2 be the costs of production of goods 1,2,
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assumed independent of the quantities consumed. The

individual h will regard X as fixed, and so will

allocate a budget B, between goods 1,2 so that

pixh + p2yh =
 Bh (3-3)

and

uhi(xh'^h'x) : uh2(xh'yh'x) = Pi : p 2
 (3-4)

with our usual convention on partial derivatives.

From a social standpoint (3.4) implies that every

household will demand too much of good 1. To see this,

let us assume that all households h have the same

utility function u(x,y,X) and the same budget B ,

and that they purchase the same quantities x,y of

goods 1,2 . Then the utility of the individual

household is

u(x,y,Nx) , (3.5)

where N is the number of households; and this is to

be maximized subject to

Pxx + p2y = B . (3.6)

The condition for maximum is now

u± + Nu3 : u 2 = P l : p 2 (3.7)

where u..,u2,u3 are the partial derivatives of

u(x,y,X) with respect to x,y,X respectively. Let

the maximum be attained at x*,y* and let u* be the

corresponding values of the derivatives. The indivi-

dual household will select x*,y if it makes its

choice under prices p.. ,p2 such that
ul : U2 = pl : P2 ( 3 # 8 )

and the budget constraint is appropriately modified.

Comparison of (3.7) and (3.8) gives
* * * *

Pl = Plui/(ul + N u 3 }

= p^ + 6 (say) > px ; (3.9)

and x ,y lies on the budget line

p*x + p2y = B+b , (3.10)

with

b = Sx* > 0 . (3.11)
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Hence the individual will make the socially optimal

choice if he is charged an inflated price p-, > p., for

good 1 and given a rebate b > 0 independent of his

choice.

In a real world the sums b would not necessarily

be returned to the households: they might be used to

improve the telephone service.

In the foregoing we have assumed, for simplicity,

that the prices of goods 1,2 are independent of the

amounts consumed. It is not difficult to modify the

argument so as to take them to be the marginal costs of

production for convex cost functions C-,(X), C~(Y) with

Y -i y» •
^• Increasing returns to scale

Monopolies have already been discussed in an

earlier chapter. They naturally arise in industries

where there are increasing returns to scale, that is

where the cost C(x) of an individual firm of pro-

ducing quantity x is such that C(x)/x decreases as

x increases. This may be because C'(x) is decrea-

sing or (as a limiting case) because there is a

fixed cost A > 0 and there are constant variable

costs to scale, so C(x) = A+Bx for some B > 0 . Here

any situation with more than one firm is unstable: a

firm with a larger market share than another can charge

lower prices and so further increase its share until it

has a monopoly.

The discussion of monopolies in Chapter 3 did not

depend on the assumption made in that chapter that C(x)

is convex. The conclusion that to maximize social

utility such a firm should equate its supply x to

demand by charging a price C'(x) holds in the more

general situation.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511663024.006
Downloaded from https://www.cambridge.org/core. SUB Gottingen, on 28 Jul 2020 at 08:07:59, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511663024.006
https://www.cambridge.org/core


63

5. Externalities

It sometimes happens that the production of one

good has effects on the production of another good by

an unrelated firm. This effect may be either malign

(e.g. fumes from a chemical factory affecting local

agriculture) or benign (e.g. effect of fruit production

on local apiaries). Such an effect is called an

externality. In the presence of externalities the

maximization of profit by each firm individually does

not lead to the greatest social benefit.

Consider two firms. The first produces good 1

and its cost of producing quantity x., is

C1(x1) , (5.1)

where C-, is a convex function of the usual type. The

second firm produces good 2 and is affected by an ex-

ternality from the first firm. Its cost of producing

quantity x~ (when the first firm is producing x-, ) is

C2(x1,x2) . (5.2)

For fixed x, this is a convex function of the usual

type; and we shall assume that

C21 = 3C2/3xl (5-3)

is of constant sign (positive for a malign and negative

for a benign externality).

We suppose that the two firms operate in a market

where the prices of the goods are PwPo respectively

(independent of x,,x2) .

Suppose, first, that the firms act entirely inde-

pendently. Then the first firm maximizes

R1(x1) = p1x1 - C1(x1) , (5.4)

and so will produce a quantity x, given by

Cll ( xl ) = pl • ( 5 # 5 )

Similarly the second firm will maximize
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given that x-. = x, , and so will choose x2 by

C22(x*,x*) = p 2 . (5.7)

Before discussing whether the choice of x-. ,x2 is

optimal for society, we note that it is not optimal for

the two firms. If they cooperate to maximize the total

revenue

then they would agree to produce quantities x-. ,x2 such

that

C-.-.Cx?) + C 9 1 (x° x°) = pn , (5.9)
11 I Z± 1 z 1

C22(x^,x2) = p2 . (5.10)

The second firm (the one affected by the externality)

still equates marginal cost to price, but the first

firm no longer does so. If C--, > 0 we have
o * o *

^11 (XT_) K ^ii (x]) an<^ s o xi < xi : that is, the first
firm is producing less because of the malign externality
on the second firm. Similarly C2-. < 0 gives
o *

xi > xi •

Even if we do not assume that the two firms will

cooperate completely, we note that it will pay the

second firm to bribe the first to produce a quantity

different from x, . If 6 is small, then R, (x,+6)

differs from R-^x,) only by a quantity of the second

order, whereas R9(xn+6,x0) differs approximately from

R2(x-.,x2) by - C2-, (x-. ,xJ) 6 > 0 for 6 of the appro-

priate sign. Hence the second firm can more than com-

pensate the first firm for the change to x.,+6 and

still have an increased revenue.

Somewhat paradoxically in view of what has been

said elsewhere about the virtues of competition, we

shall argue that social utility is maximized when the

quantities produced are (x.. ,x2) . The argument is

similar to that used to discuss monopolies. For com-

parison we introduce a third good whose production has
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no effect on and is unaffected by the production of the

first two goods. It has a cost function

C3(x3) (5.11)

of the' conventional type. We abandon the assumption

that the prices p,, p 2 are fixed and seek to maximize

a utility function

u(xx,x2,x3) (5.12)

for given budget

C1(x1) + C2(x1/x2) + C3(x3) = B . (5.13)

This will occur at x., ,x2,x3 where

uj(x1,x2/x3) = Gpj (j = 1,2,3) (5.14)

for some 0 and with

P2 =
 C22^1'^2^ (5.152)

P3 = C33(x3) . (5.153)

Here p^ , the marginal cost of the third good, is equal

to its price (in a competitive market). Hence P-,,P2

are the prices of the first two goods; and, on putting

p. = p. , we see that x. = x. by comparison of

(5.9), (5.10) and 5.15) .

We have conducted the argument so far in terms of

single firms producing goods 1 and 2, and so supposed

that they could negotiate with one another. When there

are large numbers of firms of each type this may no

longer be possible: the "transaction costs" in secu-

ring the agreement of all the firms might well outweigh

the benefits. Government could then attempt to secure

the socially optimum production of the first good

either by regulation or by imposing a tax (if the ex-

ternality is malign) or a bounty (if benign). But,

again, the additional costs of administration might not

be worthwhile.
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6. Arrow's impossibility theorem

Let S be a finite set. As usual, we define an

ordering y on S by transitivity together with the

condition that precisely one of

x ^ y , y ^ x , x X y (6.1)

holds for every pair x,y e S . Here we shall be con-

cerned with several orderings on the same set and write

x >- y (cj>) (6.2)

to mean that x >- y in the ordering $ .

We consider a finite set (society) U of indivi-

duals i , each of which has a (preference) ordering

<t>^ on S . Arrow's theorem is concerned with finding

a "social" ordering

(6.3)

which could be regarded as the ordering of S by U .

The following conditions appear natural.

I. $ is defined when each of the c|>. independently

runs through all orderings of the set S .

II. If x y y (<()i) (6.4)I f

f o r

x y

a l l

x y

y

i

y

, then

($) • (6.5)

I I I . ( Ind i f fe rence to i r r e l e v a n t a l t e r n a t i v e s . ) Let T

be a subset of S. If for each i <j>? and <|>. induce the

same order ing on T (which may depend on i ) , then so

do <S>(U°}) and $({<)>*}) .

We shall use III only when T has two elements,

but it is easy to see that this implies III for

general T .

[Note. It is not postulated that the <f>. occur sym-

metrically in (6.3).]

Theorem (Arrow) . Suppose that S has at least 3

elements and that conditions 1,11,111 are satisfied.

Then there is a 0 e U such that

(6.6)
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It is usual to say that the individual 0 is a

dictator. The impossibility theorem says that there

is no non-dictatorial social ordering $ satisfying

I,II,III. Arrow's original conditions were rather

different: the above is a later version of his which

is given in Amartya Sen's book.

Let $ satisfy the hypotheses of the Theorem. We

say that a subset V c u is almost decisive for the

ordered pair (x,y) with x =[ y if

x >- y (())i) (i £ V) ; y >- x (<i>±) (i / V) (6.7)

implies

x y Y ($) • (6.8)
First step. There is an individual 0 e U and a pair

(x,y) such that (the set consisting of the single in-

dividual) 0 is almost decisive for (x,y) .

For there certainly are sets V and pairs (x,y)

such that V is almost decisive for (x,y) , since U

is almost decisive for any (x,y) by condition II. We

choose V and (x,y) so that the number of elements

of V is minimal. If V is a singleton set, we are

done. Otherwise, V is the union of disjoint non-

empty sets V-. ,V\ • Let z be any third element of

S , and choose orderings (j). such that

x y Y y z (*±) (i e Vx) (6.91)

z y x y Y (*•) (i e V~) (6.9O)
l z z

y y z >- x (CJK) (i / V) . (6.93)

Then

x y Y ($) (6.10)

since V is almost decisive for (x,y) . By the

minimality of V , the set V- is not almost decisive

for (y,z) , and so

y > z (d>) . (6.11)

(Note that we have here tacitly used condition III.)

Similarly

z h x ($) . (6.12)
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But (6.10), (6.11) are together incompatible with $

being an ordering. This completes the first step.

We shall say that 0 is decisive for the ordered

pair (x,y) if

x y y (<|>o)=>x>-y (<f>)

and write B(x,y) . The statement that

decisive for (x,y) is written A(x,y)

B(x,y) => A(x,y) .

(6.13)

0 is almost

Clearly

(6.14)

Then

(6.15)

x y y

Y h x

Then A(x,

implies y ,

>

t

y)

Z

y

<4>o>

y z

implie

($) .

Second step. Let x,y,z be distinct.

A(x,y) => B(x,z) .

For consider any $. such that

L) (i + 0) . (6.162)

x }- y ($) and condition II

Hence x > z ($) . The second

step now follows by an appeal to condition III, on

noting that (6.I62) makes no statement about the rela-

tive positions of x,z under <f>. (i =f 0) .

Third step. If x,y,z are distinct, then

A(x,y) => B(z,y) .

The proof is similar.

We are now in business. The first step asserts

that A(x,y) is true for some (x,y) . Let z be any

third element. Then

A(x,y) => B(x,z) => B(x,y) ,

the second implication being by (6.14) and (6.15) with

(x,y,z) replaced by (x,z,y) . Further,

A(x,y) => B(x,z) => B(y,z) => B(y,x) .

Hence the true statement A(x,y) implies B(u,v) for

any (u,v)e{x,y,z} . It is now straightforward to

deduce that B(u,v) holds for any u,v e S . But this

is just the assertion (6.6) of the Theorem.
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Further reading

D. Dewey, Microeconomics (Oxford, 1975), Chapters 13,14.

R.H. Coase. The problem of social cost. J. Law and

Economics, _3 (1960), 1-44. (Entertaining as well as

informative.)

Amartya K. Sen, Collective choice and social welfare,

(Holden Day: Oliver and Boyd, 1970).
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Chapter 4 Exercises

1. A family consists of m members. Subject to a

budget constraint

px < B

it purchases a bundle x of commodities and dis-

tributes it amongst its members so as to maximize

the social utility

u(x ,...,x ) .

(To each according to his needs!) Here x is

the bundle received by member i of the family (so

E x = x) and u is a function of the mn

coefficients x"!" (n = number of commodities) of

the usual utility type. Show that the total anount

x, of the first good is diminished if its price

P-, is increased (the prices of the other goods

remaining constant).

[Hint. Chapter 1, Exercise 4.]

2. A factory produces wood pulp. The cost of pro-

ducing x tonnes per annum is f(x) pounds per

annum. It also produces effluent which flows into

a river and causes losses valued at g(x) to the

fisheries. Here f(x),g(x) are increasing stric-

tly convex functions of x > 0 . The price at

which the pulp may be sold is p per tonne (inde-

pendent of the quantity x produced).

(i) Suppose that, by law, the factory owner

must compensate the loss caused to the fisheries.

Show that he will choose to produce y tonnes per

annum, where y maximizes

px - f(x) - g(x) .

(ii) Suppose that a Free Enterprise government

abrogates the law, and that no compensation need be

paid. It is, however, open for the factory and

fishery owners to strike a bargain that the latter
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will pay the former a sum s per annum on con-

dition that the annual production of pulp is no

more than t : here s,t are subject to nego-

tiation. Show that they will agree on s = g(y),

t = y , and that a quantity y of pulp will be

produced.

(iii) Suppose that a process is invented which

renders the effluent innocuous and costs k per

annum (independent of the amount of effluent). In

case (i) show that the factory owner will install

the process when k < g(y) but not when k > g(y).

In case (ii) show that the fishery owner will

install it under precisely the same circumstances.

[cf. R.H. Coase loc. cit.]

Consider the following model of whale fishery. In

the absence of fishing, if there are y whales one

year there are y + f(y) the next, where f(0) = 0,

f (y) increases in 0 < y < y, , and decreases for

y - Y T J passing through 0 at y = y~ • Show

that the whale population in the absence of fishing

tends to y2 , and that the maximum number of

whales which can be caught annually without ul-

timate extinction of the stock is f (y-,) .

A whaling boat costs b > 0 to operate for a

year. It catches g(y) whales annually, where

g(y) is a strictly increasing function of the

stock y . Let p be the price of a whale, and

define y by g(y ) = b/p . Show that it is not

profitable to engage in whaling if y > y2 . If

y < Y2 r show that in a competitive situation

boats will enter the industry until the total num-

ber of boats is N = f(y*)/g(y*) . Show, however,

if y < y, that the total catch would be im-

proved if the total number of boats is restricted

to a smaller number.
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Because of technical improvements, the

function g(y) is replaced by h(y) > g(y) - Show

that in a competitive situation the total catch

will be reduced for certain values of the

parameters.

(Lindahl prices.) Justify the unproved statements

in the following account of a model which extends

the notion of a (Walras) competitive allocation to

include public goods. There are finitely many

private goods and public goods. Bundles of pri-

vate goods are denoted by small letters e.g. x

and bundles of public goods by capitals e.g. X .

The economy E consists of a finite number

of households h . Each has a preference re-

lation -< , of the type introduced in Chapter 2,

on bundles (X/X) °f combined private and public

goods. Initially, there are no public goods and

h has an endowment w, of private goods.

There is a process which can create public

goods from private goods. The set M of (y_,Y) /

where Y can be created from y_ , is a closed con-

vex cone with vertex (o,0) . If (o,Y) e M ,

then Y = 0 . (Public goods cannot be created

from nothing.)

An allocation is given by a bundle a., of

private goods for each household, and a bundle A

of public goods, subject to the condition that

there is a bundle a of private goods with

and

a + E ah = E

(a*,A) e M

Show that the set of {a,}, A is bounded for given

M and {w, } .—n

A Lindahl allocation is given by a price

vector £ for private goods together with price
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(B)
for

(ii)

all

Either

= £*A ,
(Y,Y) e

(a)

where

M .

a

i*
= o
= Z

73

vectors I\ for public goods, one for each house-

hold. The allocation "tjH.} is Lindahl for these

prices if

(i) (x,X) = (a,,A) maximizes hfs utility

subject to the budget constraint

«• —n~~ ̂ ~^—n

A = 0 , or

and P Y < £y_

Show that a Lindahl allocation is Pareto

optimal.

A coalition S c E is blocking for the allo-

cation {a, },A if there is some other allocation

for which the h / S retain their initial endow-

ments and which is preferred by all the h e S

(strictly preferred by at least one of them). An

allocation is in the core if there is no blocking

coalition. Show that a Lindahl allocation is in

the core.

The preceding does not require the indifference

hypersurfaces (or, indeed, the cone M) to be con-

vex. For the rest of the exercise we suppose that

they are, but not necessarily strictly convex.

Let {a, },A be Pareto optimal. Show that—n —
there are prices £/{Pu} such that <LurA maxi-

mizes h-utility subject to the budget constraint

£x + P,X < £ah + P,A .

(cf. Chapter 2, Exercise 7).

By modifying the argument of Chapter 2,§3 and

its Addendum, show that a Lindahl allocation always

exists. More precisely, let £ >> 0, P, >> 0 be

prices. For each h let (x,X) = (c,,Ch) maxi-

mize h-utility subject to the budget constraint (*).

Further, let (d*,D) satisfy either (iia) or (ii$)

above. Then there is an excess demand
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e = d* + I ch - E wh

for private goods. Further, household h has an

excess demand

for public goods. Here

££ + l £h-h = ° • (@)

For given £/{£h} , the set of e,{E, } is convex.

It depends upper semicontinuously on £/{£>} in

the sense of the Addendum to Chapter 2, §3. Modify

the definition of excess demand to cover the case

when some of the prices are 0 . Then the general

ization of Lemma 3.1 of Chapter 2 applies (with (@)

the analogue of (3.14)).

[Cf. D.K. Foley. Lindahlfs solution and the

core of an economy with public goods. Econometrica

38 (1970), 66-72.]
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CHAPTER 5. LINEAR ECONOMIC MODELS

1. Introduction

In this chapter we consider some very simple models

of an economy in which production of goods from other

goods can take place. There are a number of activities

(or processes) P each of which can be run at any

intensity y > 0 . There are constant returns to scale,

so that the input and output of yP are y times those

of P . Further, two activities can be run simul-

taneously. If P, , P2 are two activities, then the

input and output of Pi + P2 a r e ^ e sums of those for

P-. ,P2 . Sometimes we shall assume that there are a

finite number P,,...,P of basic activities such that

every activity P is of the shape

P = Z yiPi ' (yi " 0 ) ' ( 1 # 1 )

i
Here y_ = (y,,...,y ) > 0 is the intensity vector.

In general, goods can serve both as inputs and

outputs to the activities. If a good is not part of

the output of any activity, it is called a factor of

production (or primary good).

Although prices do not occur in the formulation of

the models, we shall see that they arise very naturally

in their treatment.

2• Closed and open Leontieff models

We suppose, first, that there are n producible

goods labelled l,...,n and no factors of production.

There are also n basic activities all of which have

the same period of operation (a "year"). Activity
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P. when operated at unit intensity produces a unit of

good j at the end of the year and requires an input

a(j) = (a^,...^.) > 0 (2.1)

at the beginning of it. We regard vectors such as

a(j) , representing bundles of commodities, as column

vectors (though we shall continue to write them hori-

zontally to save trees). We combine the a(j) to make

a square matrix

A = (a±j) . (2.2)

If the activities operate at intensity y_ (also a

column vector), the input required at the beginning of

the year is Ay_ and the output at the end is y_ . There

is thus a net product of y_ - Ay_ . We require that the

net product is non-negative (e.g. because we are in

a steady state), that is

y_ - A^ > 0 . (2.3)

The system just described is sometime called a closed

Leontieff model.

Theorem 2.1. The following conditions are equivalent:

(i) for each j there is an intensity vector such

that the net product includes a positive amount of

good j ;

(ii) there is an intensity vector y_ > 0 such that

the net product contains a positive amount of every good:

that is,

y_ - A y_ > > 0 ; (2.4)

(iii) there is a price vector £ > 0 such that

every activity makes a (strictly positive) profit: that

is,

£ >> £A ; (2.5)

(iv) every eigenvalue of A is strictly less than

1 .

Further, if these conditions are satisfied, for

every bundle x > 0 of commodities there is a unique

intensity vector y_ such that x is the net product:
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that

Proof

is,

z -Av. =
(ii)

(i)

X

- (i) •

•*• (ii) •

Trivial.

Take for the

(2.6)

y_ in (ii) the

sum of the intensity vectors in (i) for j = l,...,n .

(ii) -«--* (iv) . This is an immediate conse-

quence of the theory of non-negative matrices. More

precisely, in the notation of Theorem 1 of Appendix C,

both (ii) and (iv) are equivalent to y (A) < 1 (by (iv)

and (ii) of the theorem respectively ) .

(iii) «~> (iv) . This is the dual of the

preceding.

All the conditions are thus equivalent to y(A) < 1.

If this holds we have

(I - A ) " 1 > 0 (2.7)

by (v) of the theorem in the Appendix. Hence given

x > 0 the only solution of (2.6) is

y_ = (I-A)"1^

> 0 . (2.8)

This concludes the proof.

If we permit the introduction of factors of

production we have an open Leontieff model. We suppose

that there is a single factor of production ("labour")

and that activity P . at unit intensity requires

b. > 0 (2.8 bis)

units of labour (note the strict inequality). The

vector b = (b,,...,b ) is a row vector. For inten-

sity y_ the labour requirement is by_ .

Theorem 2.2. In the model just introduced, suppose

that the price of a unit of labour ("wage") is 1 . The

following statements are equivalent:

(i) there is an intensity vector y_ such that the

net product contains every good in positive quantities,

that is,

y - Ay_ >> 0 . (2.9)
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(ii) there is a set of prices £ = (p-,,..-/Pn) such

that every activity at least breaks even, that is,

£ > £A + b . (2.10)

(iii) All eigenvalues of A are strictly less than

1 in absolute value.

If these conditions are satisfied, for every bundle

x > 0 of commodities there is a unique intensity vector

y_ such that x is the net product. The amount of

labour required is vx , where

v = b(I - A ) " 1 . (2.11)

At prices £ = v every activity P. precisely breaks

even.

Proof. This is an almost immediate consequence of

Theorem 2.1. Clearly condition (iii) of Theorem 2.1

is equivalent to (ii) of this theorem. Hence (i),(ii),

(iii) are equivalent by Theorem 2.1. If x,y_ satisfy

(2.6), the labour required is by_ = vx , where v is

given by (2.11). Finally, £ = v gives equality in

(2.10).

We note that (2.11) can be written

v = b + bA + ... + bAk + ... , (2.12)

which has a heuristic interpretation. Let x > 0 be

a bundle. It is the gross output of working with in-

tensity x . This requires bx labour and an input of

Ax . Now Ax is the gross output of activity Ax ,
2

which requires bAx labour and an input A x . And so

on. Hence the total labour input is

bx + bAx + bA x + ...

= vx . (2.13)

This confirms that vx is the amount of labour required

to produce x , and gives an interpretation of the indi-

vidual summands in (2.12).

For later use we also note the

Corollary. Any set of prices £ at which every acti-

vity breaks even (or better) satisfies £ > v .
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Proof. For (2.10) can be written

£(I-A) > b . (2.14)

The required result now follows from (2.7) and (2.11).

We now generalize. Instead of only one basic

activity producing good j , we suppose that there may

be several, say P.(m) (1 < m < M.) , all of which may

be run simultaneously at arbitrary (non-negative) inten-

sities. Each such activity P.(m) (at unit intensity)

requires an input a.(m) (say) of goods and b.(m) > 0

of labour and has an output of a single unit of good j .

Again we consider only intensities

Y : {y. (m) (1 < m < M. , 1 < j < n) } (2.15)

such that the net product is non-negative.

A given bundle x > 0 can now in general be ob-

tained as a net product for many different sets of in-

tensities (2.15). In general, the different Y will

require different inputs of labour. We say that Y

yields x efficiently (as a net product) if the labour

required is a minimum (over all Y yielding x) • x t

turns out that the multiplicity of alternative activities

is no advantage. We can select n activities

Pj(m*) (1 < j < n) (2.16)

such that every bundle x is yielded efficiently by a

combination of them alone. More formally:

Theorem 2.3. For the system just described the two

following statements are equivalent:

(i) some bundle x >> 0 can be produced (as net

product);

(ii) there are prices £ > 0 such that for each j

at least one of the P.(m) does not make a loss (labour

having unit price).

If these conditions are satisfied, then

(a) every bundle x > 0 can be produced;

(b) there is a set v >> 0 of prices such that

none of the P.(m) makes a profit and that for each j
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at least one, P. (m. ) (say), breaks even;

(c) every bundle x > 0 can be produced efficient-

ly by the use of a combination of the P.(m*) alone.

The amount of labour required to yield x > 0 as net

product is vx .

Note. Both this theorem and its generalization to the

Sraffa model (cf. Exercise 9) are called Samuelson's

non-substitution theorem.

Proof. (ii) •* (i) . Immediate from Theorem (2.2).

(i) -> (ii) . Suppose that x >> 0 is the net

product of the activity

M.
n 3
1 I y. (m)P. . (2.17)

J m=l

We can write this in the shape

n f

2 y! P. , (2.18)
j=l J D

where

P. = E u. (m)P. (2.19)
3 m=l 3 J

and the u.(m) > 0 satisfy

Z u.(m) = 1 (all j) . (2.20)
m 3

Then the P. have the properties postulated for the P.

in Theorem 2.2 (output at end of year is one unit of

good j) . Hence, by that theorem, (i) implies that
i

there is a set of prices p such that each P. at

least breaks even. But then, by (2.17) and linearity,

for each j at least one of the P.(m) at least breaks

even.

(a) Immediate from Theorem (2.2) .

(b) The set S of £ with the property (ii) is

bounded away from zero (e.g. by Theorem 2.2 Corollary)

and is closed. Hence E p. attains its minimum in S ,
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say at v • Suppose that one of the P.(m) makes a

strictly positive profit at prices v , say pv-(m]) •

Then it will continue to make a positive profit at

prices p' , where p̂ . = vk~6 ' Pj
 = vj (J ^ k) / Pro"

vided that 6 > 0 is small enough. Any P.(m) (j / k)

which breaks even or better at prices v will certain-

ly do so at prices £* . This contradicts the defi-

nition of v . Hence no P.(m) makes a positive

profit at v . By the definition of S there is,

however, for each j , a P.(m.) which breaks even at

v .

(c) By Theorem 2.2 every x > 0 can be obtained

as the net product of a linear combination of the

P.(m.) . Since the P.(m.) break even at prices v ,

the amount of labour required is vx . On the other

hand, no P.(m) makes a positive profit at v . Hence

for any combination (2.17) of activities which yields x

as net product, the amount of labour required is at

least vx . Thus the production by the P.(m*) is

efficient.

Theorem 2.3 asserts the existence of prices v

such that vx is the minimum amount of labour required

to yield any given bundle x > 0 . Hence v can be

regarded as a measure of the labour content. Such

prices play an important role in the work of Ricardo

and Marx and are described as value to distinguish them

from other prices which may be considered. The exis-

tence of value depends, however, crucially on the

rather strict conditions imposed. Theorem 2.2 breaks

down if there is joint production, i.e. a basic process

produces quantities of more than one good (as the sheep

industry produces both wool and mutton). Again, there

is no analogue of Theorem 2.3 when there is more than

one factor of production (e.g. labour and land; or

skilled and unskilled labour). [See Exercises.]
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3. The Sraffa and Marx models

Throughout this section, we consider the situation

to which Theorem 2.2 refers. There are n producible

goods and one factor of production ("labour"). There

are n activities P . . Activity P. requires an

input of a(j) at the beginning of the year and also

b. > 0 units of labour: at the end of the year the

output is a single unit of good j . The matrix A is

given by (2.2) so that if the activities operate accor-

ding to intensity vector y_ the input required is the

bundle Ay_ of goods and by_ labour; and the gross

output is y_ . We denote by v the value given by

(2.9) .

We suppose that the equivalent conditions (i) , (ii),

(iii) of Theorem 2.2 are satisfied, so that the largest

positive eigenvalue y(A) of A is <1 by (iii). We

write

{y(A) r 1 = 1 + n (3.1)

where

n > 0 . (3.2)

Our own Piero Sraffa considered (Production of

commodities by means of commodities) a system under

which (i) labour is paid a wage w > 0 , and (ii) the

inputs are supplied by capitalists who charge a rate of

interest TT . Then the activities P. no longer

break even when evaluated at prices v . However,

prices p establish themselves by the usual economic

forces under which all the P. precisely break even.

They must satisfy

(1+7T)£A + Wb = £ . (3.3)

Since b >> 0 we must have

y(A) (1+TT) < 1 (3.4)

by the theory of non-negative matrices; that is

TF < n (3.5)

by (3.1). Then (3.3) gives
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-1 k

w £ = b + (l+7r)bA + ... + (1+TT) bA + ...

> v (3.6)

for IT > 0 , since ir = 0 gives w~ j> = v by (2.11) .

Hence the rapacity of capitalists has increased the level

of prices, relative to the wage, above the value v .

The system considered by Marx in Das Kapital is

more elaborate than that of Sraffa. Each workman re-

quires a certain minimum bundle d of commodities which

is necessary for him to subsist for a year. The ruth-

less operation of capitalism ensures that he gets only

d and no more. The value of the subsistence bundle d

is the subsistence wage

s = vd . (3.7)

On the other hand, the value of the labour provided by

a workman is 1 by the definition of v . Marx calls

1 - s (3.8)

the unpaid wage or surplus value. This is the part of

the fruit of his labours of which the labourer is con-

sidered to be deprived. The ratio

a = (l-s)/s (3.9)

is the rate of exploitation or rate of surplus value.

Marx supposes that the capitalists advance not only

the goods required as inputs for the activities but also

the goods required for the subsistence of the workforce.

At activity y_ they therefore advance

Ay_ + (by_)d . (3.10)

The (gross) output is y_ . As in the Sraffa model,

Marx supposes that capitalists charge a rate of interest

(or rate of profit) TT and that goods are exchanged at

prices £ for which each activity just breaks even.

Hence TT and JD satisfy

(l + 7T)£(A+db) = £ . (3.11)

Here db , the product of the column vector d and the

row vector b , is a square nxn matrix of rank 1 . The

theory of positive matrices (Appendix C) shows that
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(1+TT) is the largest positive eigenvalue of A+db .

[If A+db is irreducible, this follows from the

Corollary to the Theorem in Appendix C. If this con-

dition is not satisfied, any possible other solutions

IT,£ of (3.11) are dismissed as being economically

meaningless.]

Theorem 3.1. TT > 0 precisely when a > 0 , and then

TT < a . (3.12)

Proof. By (3.11) we have

y(A+db) = (1+TT)"1 , (3.13)

and so there is a bundle of goods e > 0 such that

(1+TT) (A+db)e = e . (3.14)

Further, by (2.9), (3.7), (3.9) we have

v{A + (l+a)db} = v . (3.15)

On acting with v on (3.14) on the left and with e

on (3.15) on the right, we obtain

a(vd)(be) = Tr{vAe + (vd) (be) } . (3.16)

Here the scalar products vd, be are strictly positive

because we have supposed by (2.8 bis) that b >> 0 , so

v >> 0 by (2.11). Further, vAe > 0 . Hence (3.16)

implies all the statements of the Theorem.

Marx regarded the distinction between v and £

as fundamental to economics (the "transformation of

values into prices of production"). However, textual

critics say that he did in fact muddle them. Further,

his metaphysical predilections led him to assert re-

lations which are in fact not true as mundane propo-

sitions of linear algebra. For all this, we refer to

the books of Morishima and Pasinetti listed at the end

of the chapter.

4. The Gale economy

Here there are no factors of production: every

good may be produced by some activity. It is thus

assumed either that sufficient labour is available so

as not to be a limitation or, alternatively, that it is
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produced from inputs of food, clothing etc. Joint pro-

duction is permitted and, indeed, is regarded as the

rule.

We suppose that all activities have the same period

of operation (a "year"). We first look at the economy

over a single year, and will subsequently (§6) consider

a sequence of years. There are n goods. We shall

denote an activity by the pair (u,v) where u > 0 is

the input and v > 0 the output [if two activities have

the same u and v they are identified]. The set of

(u,v) is the economy E , which we regard as a subset

of R n . We suppose that E is a convex cone, that

is, that

(i) if (u,v) € E then (Au, Xv) e E for all

X > 0 ;

(ii) if (u1,^1) , (u2,v2) e E then (u^u2,^1-^2) e E.

We also make the following assumptions.

Assumption 1. E is a closed subset of R

This is primarily a technical convenience.

Assumption 2. If (0,v) e E , then v = 0 . (4.1)

(No free lunch assumption.)

Assumption 3. Every good occurs in the output of some

activity (i.e. given j there is some (u,v) e E with

Vj > 0 ).

For, otherwise, the good would disappear from the

economy after the first year.

We now define the technological expansion rate a

to be the supremum of the a > 0 such that v > au for

some (H'Z) £ E with v =j= 0 .

Lemma 4.1. 0 < a < °° . (4.2)

There is an (u*,y*) e E such that

v* > au* > 0 . (4.3)

Proof. By homogeneity we may restrict attention to

(u,v) in

E u. + E v. = 1 . (4.4)
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By Assumption 3, there is (u,v) with v >> 0 , so

a > 0 . If a = °°,so a can be arbitrarily large,

then by Assumption 1 and the compactness of (4.4) we

should have a (U'Z) o n (4.4) with u = 0 , contrary

to Assumption 2. Finally, the existence of (u ,v )

satisfying (4.3) again follows from a compactness

argument.

The economic expansion rate 3 is defined to be

the infimum of the b for which there exists a £ > 0

with EX - k£u_ for all (u,v) e E .

Lemma 4.2. 0 < 3 . (4.5)

If 3 =|= °° (which will be proved in Lemma 4.3), then

there is a £* > 0 such that

2*v < 3£*u (4.6)

for all (u,v) £ E .

Proof. We need consider only p in the compact set

£ Pj = 1 . (4.7)

If 3 =(= °° , then the obvious compactness argument gives

a p* satisfying (4.6). If 3 = 0 , (4.6) is a con-

tradiction to Assumption 3, so (4.5) holds.

Lemma 4.3.

3 < a . (4.8)

Proof. The cone W c Rn consisting of the

w = v - au (il'Z) £ E (4.9)

is convex, since E is convex. It is disjoint from

tt : w >> 0 : (4.10)

for if v° - au° >> 0 for some (u°,v°) e E , then

v° > au° for some a > a , contradicting the maxi-

mality of a . By a standard result on convex cones

(Lemma 8 of Appendix A), there is a £ > 0 such that

£W < 0 (all w e W) ; (4.11)

that is

pv < a£u (all u,v) e E) . (4.12)

Hence we can take b = a in the definition of 3 / and

(4.8) follows.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511663024.007
Downloaded from https://www.cambridge.org/core. SUB Gottingen, on 28 Jul 2020 at 08:07:59, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511663024.007
https://www.cambridge.org/core


87

We say that the economy E is reducible if there

is a non-empty proper subset T of the goods l,...,n

which can be produced using only the goods in T . (In

other words, if E T consists only of the (u,v) e E

which the bundles u,v contain only goods in T , then

E is a Gale economy on T satisfying Assumption 3.)

If E is not reducible, it is irreducible.

Lemma 4.4. Suppose that E is irreducible. Then

v* >> 0 , (4.13)

3 = a (4.14)

and

£ v = aj> u . (4.15)

Proof. Denote by T the set of t for which v > 0 .

Then u. = 0 for j / T by (4.3). If T is a proper

set of the goods, then it has all the properties required

in the definition of reducibility. Hence irreducibility

implies (4.13) .

By (4.3) and (4.6) we have
aE*H* * P*Z* * 3£*u* , (4.16)

where £*v* > 0 by (4.13). Hence a < £ , so (4.14)

holds by Lemma 4.3. Finally, (4.15) follows from

(4.14) and (4.16) .

Corollary. Let j be a good for which v* > au* .

Then j is free in £

For we can write (4.15) in the shape

£*(v* - au*) = 0 (4.17)

and invoke (4.3).

5• von Neumann model

This is the special case when every activity P is

a combination

P = E yiPi y± > 0 (5.1)

of a finite number m of basic activities
pi = (H1'!1) (1 < i < m) . (5.2)

Here y_ = (y, ,...,y ) > 0 is the intensity vector.
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Assumption 1 of §4 is automatic. Assumption 2 is

satisfied if

u 1 + 0 (1 < i < m) . (5.3)

Finally, Assumption 3 holds provided that for each

good j there is some i such that v. =j= 0 .

It is left to the reader to translate the results

of §4 into this new framework and we mention only

Lemma 5.1. Suppose that the economy is irreducible,

and let the intensity vector y_ correspond to (u ,v ) .

Suppose that activity P. does not give a rate of re-

turn a at prices £ , that is that

£*vi < a£*u1 . (5.4)

Then y* = 0 (i.e. the activity is not indulged in).

Proof. Equation (4.16) becomes

I yi(a£*u
i - £*vi) = 0 , (5.5)

where all the summarids are non-negative by (4.6) and

(4.15) .

6. Turnpike theorems

We revert to the discussion of an irreducible Gale

economy E in §4, and retain the same notation. Hither-

to we have looked at it over a single "year". We now

consider it over a succession of years, and will suppose

that

(3 =) a > 1 , (6.1)

so that the stock of goods in the economy can expand.

Each year t starts with a stock s_ of goods. An

activity is chosen of which this is the input. The

output is the stock for next year. We thus get a

sequence s_ , s_ , ̂  , . . . of stocks such that

(st~1,st) e E (t = 1,2,...) . (6.2)

Given the initial stock, the object of good economic

management is to choose a sequence of activities so that

the sequence _s , _s , . . . is optimal in some way to be

decided.
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A limitation to the growth of the sequence js is

given by (4.6), which (with (4.15)) implies that

E*^ < a V l 0 . (6.3)
To obtain results in the opposite direction, it is con-

venient to assume that there is free disposal, that is

that at any time the economy can diminish its stock of

goods without penalty. In symbols this is the assump-

tion that

u° > u , v > v0, (u,v) € E => (u°,v°) e E . (6.4)

With free disposals, (4.3) implies that

(v*,av*) e E . (6.5)

On taking ŝ  = v* , we see that (6.3) is best possible.

More generally, if we assume that j5° >> 0 , then

there is some X > 0 such that

Av* < ̂ ° (6.6)

and we may choose the sequence

s*- = Xa^K* (t > 0) (6.7)

for which £*s. differs from the right-hand side of

(6.3) only by a constant independent of t .

So far we have been valuing the stocks at von

Neumann prices £ . However, if £ >> 0 (there are

no free goods at von Neumann prices) and if £ >> 0

is another price vector, then £*x/£x. lies between

positive constants for x > 0 . Hence for the asymp-

totic behaviour of S3 it makes little difference

whether we use £ or £

It will be observed that all of the stocks (6.7)

lie on the ray

R = Uv* : X > 0} . (6.8)

There are a number of theorems which state that, under

appropriate conditions, most of the stocks £ in a

sequence which is optimal in some sort of way will lie

not far from R . Such theorems are known as turnpike

theorems from an American word meaning "trunk road".

The optimal way to develop the economy is thus (in this

model) largely independent of the original stock and of
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the ultimate goal: if you wish large quantities of

candy-floss, you should promote heavy industry!

We shall now enunciate and prove a simple turnpike

theorem. By a conical neighbourhood of R we shall

mean an open cone which contains R .

Theorem 6.1. Suppose that £* >> 0 , that any (u,v) e E

such that

£*V > Ct£*U (6.9)

is a multiple of (v*,av*) , and that there are free

disposals. Let prices £ >> 0 , an initial stock

s° >> 0 and a conical neighbourhood N of the turnpike

R be given. Then there is a constant K , depending

only on the economy E and on £,£ >N , with the follo-

wing property:

Let T be given and choose the sequence of stocks

s°, s1, . . . , £ T (6.10)
Tso as to maximize £s_ . Then at most K of the

s_ (0 < t < T) lie outside N .

Note. For an economy of the type discussed in §5, the

condition involving (6.9) can be satisfied only if

(v ,av*) is a multiple of a basic activity, as is

easily verified, so the theorem is really only of in-

terest for more general Gale economies.
T TProof. The sequence (6.7) has £s = C a , where C

depends only on £,s° (and the economy E). Hence for
Ta sequence maximizing £S we have

£*sT > C^ (6.11)

for some constant C-, .

By the first hypothesis of the enunciation, there

is a 6 > 0 such that

£ V < (0t-6)£ U

for (u,v) e E unless u,v

neighbourhood N . Hence

2 * ^ < (a-6)£*st"1

unless £ and £ ~ lie in

ber of t (0 < t < T) fo

both

N ,

hich

lie

' st

in

If

i

the

L

N ,

(6.

conical

(6.

12)

13)

is the num-

we thus have
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* T ^ , X vL T-L * o f r i A \

£ ^ < (a-6) a £ s_ (6.14)

On comparing (6.11) and (6.14) we have

6L > C2 > 0 ,

where

6 = (a-6)/a < 1

and C~ is a constant. Hence L is bounded, as

asserted.
Further reading

David Gale, The theory of linear economic models
(McGraw-Hill, 1960).

For §3:

P. Sraffa, Production of commodities by means of
commodities (Cambridge U.P., 1960).

M. Morishima, Marx's economics (Cambridge U.P., 1973).

L.L. Pasinetti, Lectures on the theory of production
(Columbia U.P., 1977).

For §6:

D. Gale, The closed linear model of production. In
Linear inequalities and related systems, Annals of
Math. Studies 38, Princeton U.P., 1956.
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Chapter 5 Exercises

1. In the model considered in Theorem 2.2 suppose that

technical progress reduces the amount of labour re-

quired in activity P, to b, < b, . Show that

the new value vector v' satisfies v1 < v . Show,

further, that v!/v. > v^/v, for every j .
J J K K

Similarly, consider the effect of diminishing

the amount a., of good i required as an input

to Pk .

[Hint. For j ^ k one has both va(j) + b. = v.

and v a(j) + b . = v . . Consider the j for which
i

v./v. is minimal.]

[Morishima: Marx's economics.]

2. The activity P, requires an input of h unit of

good 1 and produces one unit of good 2 and one unit

of good 3. Processes P
2'

P3 a r e s i m i l a r w i t n

cyclic permutation of the indices 1,2,3. Each pro-

cess P. requires one unit of labour. Find the

bundles x > 0 that can be the net product of an

intensity vector y_ requiring one unit of labour.

Show that the conclusion of Theorem 2.2 fails to

hold.

[Gale: Linear economic models.]

3. Suppose that there are two factors of production

(skilled and unskilled labour) and two produced

goods. Activity P, produces one unit of good 1

using one unit of skilled labour. Activity P~

produces one unit of good 2 using one unit of

skilled labour and activity P.. produces one unit

of good 2 using two units of unskilled labour.

One unit each of skilled and unskilled labour is

available. Show that the set of outputs that can

be efficiently produced by combinations of any two

activities is strictly smaller than the set that
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can be produced by using all three. (Contrast

Theorem 2.3.)

[Gale.]

The open Leontieff model of Theorem 2.2. is said to

have uniform capital intensity (or uniform organic

composition of capital) if b is an eigenvector of

A for eigenvalue y(A) .

Consider a Sraffa Model with uniform capital

intensity and fixed rate of interest TT . Show that

one can take £ = v and that then the wage w is

given by

TT = II(l-w) .

[Pasinetti: Lectures on theory of production.]

In the open Leontieff model of Theorem 2.2 show

that there is a bundle s_ > 0 which is an eigen-

vector of A for eigenvalue y(A) . When it is

normalized by vs = 1 it is Sraffafs standard net

product. Show that

bs = {n/(l+n)}

in the notation of §3.

In the Sraffa model let £ be normalized by

£s = 1 . Show that

TT = II(l-w) .

[Pasinetti. loc.cit.]

Consider Marxfs model when there is uniform inten-

sity of capital [Exercise 4]. In the notation of

§3 show that TT = n (1-6) / (4 + 6II) , where 6 = vd ,

and confirm Theorem 3<1.

[Pasinetti. loc cit.]

Consider Marx's model when the subsistence bundle d

is a multiple 6_s of Sraffafs standard net product

[Exercise 5], Show that TT is given by the same

formula as in the preceding exercise, and confirm

Theorem 3.1.

[Pasinetti. loc cit.]
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The manufacture of a certain good requires the in-

put only of labour, but there are two alternative

processes. To have a unit of the good now, al-

ternative P1 requires 27 units of labour a

year ago. Alternative P~ , however, requires

10 units of labour two years ago together with 18

units now. Let IT be the rate of profit (in the

sense of §3). Show that P~ will be chosen if

0.2 < IT < 0.5 but P1 if either TT < 0.2 or

IT > 0.5 .

[Note. This examplifies the phenomenon of

reswitching, which is regarded by some economists

as paradoxical.]

(Reswitching in Sraffa model.) This exercise ex-

tends the simple Sraffa model discussed at the be-

ginning of §2 to the situation discussed in

Theorem 2.3, when there are several activities

P.(m) (1 < m < M.) producing good j (1 < j < n) .

(i) For fixed rate of profit TT , prove an

analogue of Theorem 2.3. Denote by £(TT) the

price vector corresponding in this analogue to v

(normalized by w = 1): and let the set of activi-

ties corresponding to the P.(m.) be

Pjdn^TT)) (1 < j < n) . (@)

(ii) If 7T is now allowed to vary, show that

in general m.(Tr) depends on TT .

(iii) Show that £(7T,) < £(TF2) whenever

(iv) Suppose that we are interested only in

the production of good 1 and regard goods 2,...,n

as "intermediates". Let L(TT) be the amount of

labour required to produce a single unit of good 1

(as net product) by the set (@) of processes which

are adopted when the rate of interest is IT . Show
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that normally L(TT) is a stepwise constant function,

not well-defined at points of discontinuity. (In

exceptional cases there can be intervals in which

L(TT) is not well-defined) . Give an example to

show that L(TT) need not be a monotone function

O f 7T .

[Hint. Previous exercise. Note. The

result that L(TT) may decrease when i\ increases

is contrary to some intuitions about the effect of

interest rates on labour-intensity of production.

For discussion, cf. Burmeister, Capital theory and

dynamics, Chapter 4.]

10. (a) Let E be an irreducible Gale economy. Let

Y > 0 be real and suppose that

(i) there is a price vector £ > 0 such

that £ v < Y£ u (all (u,v)).

(ii) There is a (u°,v°) e E such that

v° > YH° > 9. •
Show that a = 6 = Y

(b) Show that the von Neumann economy E with

4 goods and the 3 basic activities (\J? ,v^)

(1 < j < 3):

u1 = (0,1,0,0) , v]_ = (1,0,0,0)

u2 = (1,0,0,1) , v2 = (0,0,2,0)

u3 = (0,0,1,0) , v3 = (0,1,0,1)

is irreducible. By considering the intensity

vector y_ = (6,6 ,1) and the price vector

£° = (l,6,62,O) , where 63 = 2 , show that a = 6"1.

[Gale.]

11. Let E be a Gale economy and let U be a bounded

set in Rn . Show that the set of v for which

there is a u e U with (U'Y.) € E -*-S a l s o

bounded.

12. Let E be a Gale economy, and let E° be the set

of (u°,v°) € R n for which there is some
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(u,v) e E with u < u° , v > v° . Show that E°

is also a Gale economy. Show that E° has free

disposal, and that it has the same technological

expansion rate and economic expansion rate as E .

13. Let a > b > 1 . Consider the set E of pairs of
2

vectors (u,v) with u,v e R and

0 < v, < au~ / 0 < v2 ^ bu-. .

Show that E is an irreducible Gale economy, and

determine the expansion rate a .

Let T be a positive integer and ss = (1,1) .

Determine the sequence of stocks s_ with
t—1 t T

(.?_ ,£> ) e E which maximizes £S for JD = (1,1) .

Show that the conclusion of the Turnpike Theorem

does not hold.

14. Show that the results of §6 continue to hold if

free carry-over is supposed instead of free dis-

posal. Free carry-over is defined by

x > 0 , (u,v) € E => (u+x,v+x) e E .

15. ("catenary property"). Under the conditions of

Theorem 6.1, show that there is an L* (depending

only on £,s°,N) such that £ e N for all t in

L* < t < T-L* .

[Hint. Normalize v* so £*v* = 1 . Let

n > 0 be small. There is a conical neighbour-

hood N* of the turnpike R such that for every

x e N we have

(l-n) (R*x*)y_* < x < (i+n) ( R V V * .
Let L be the value of L corresponding to N

Then there are t(l) < L * , t ( 2 ) > T-L* such that

_s t ( 1 ) e N* , j3t(2) e N* . We can now consider

replacing £ by (i) freely disposing at t(l) to

get on the turnpike, staying on the turnpike untilt(2) and then freely disposing to get a multiple

ps t ( 2 ) of s t ( 2 ) , (ii) replacing s1 by ps1 f

t > t(2) . If p > 1 , this contradicts
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optimality, so p < 1 . Hence

£*S
t ( 2 )/£*S t ( 1 )

> (a-6) a

if n is chosen appropriately, and the result

follows.]
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CHAPTER 6. SIMPLE MACROECONOMIC MODELS

1. Introduction

Macroeconomic theory considers the working of the

economy as a whole, and deals in large aggregates such

as "total income", "total demand", "saving", "invest-

ment" and the like. It is not always clear exactly

what these terms mean, even less how they should be

measured in any given situation; and different econo-

mists have taken different interpretations. We shall

adopt the eminently respectable tradition of pushing

these difficulties to one side.

One must consider the ways in which these large

aggregates affect each other. It is almost certainly

true that everything affects everything else. We shall

single out the influences we treat as important, and

ignore the others. Economists of different epochs or

of different schools have considered different influen-

ces to be the important ones, and so arrived at radically

different theories: there is less concensus in macro-

economics than in microeconomics. We shall follow the

paradigm of Samuelsonfs Economics, itself based on the

ideas of Keynes. We start from simple models and work

up to more sophisticated ones, sometimes modifying (or

even abandoning) hypotheses made earlier.

Some classical economists have asserted that "money

is a veil", i.e. that it obscures our view, but does not

affect the workings, of the "real economy". Hitherto

we have indeed treated prices only as constructs which

facilitate the mathematical treatment of the "real

economy". We shall now have to consider the interaction
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of the monetary with the "real" economy.

The economy we consider will be "closed"; that is,

there is no external trade. We shall be concerned only

with a static situation, though we may compare static

situations with different values of the parameters

(comparative statics). We shall even ignore questions

of stability, as their discussion requires "economic

dynamics", at least in a rudimentary form.

A list of the many symbols which are necessarily

introduced is given for reference at the end of the

Chapter.

2. An ultrasimple model

Consider the three quantities

(i) Aggregate demand, consisting of consumers1 pur-

chases, investment purchases, government purchases etc.

We denote by Z the value at current prices.

(ii) The output Q of goods and services produced

by businesses etc. This also is valued at current

prices.

(iii) The total income Y of the factors of pro-

duction, that is, wages, rents, etc.

There is a cyclical relationship

Z -> Q -> Y •> Z . (2.1)

Aggregate demand Z calls forth output Q . The pro-

ceeds of the sale of output accrue as income Y to the

factors of production. Finally, the spending of the

income Y gives rise to the demand Z . If the economy

is out of equilibrium, there will, in general, be lags

in the cycle (2.1) as the system evolves in time. We

are concerned here only with equilibrium conditions, and

then

Z = Q = Y . (2.2)

Demand falls into two parts:

Z = C + I . (2.3)

Here C is the demand for consumption and I is the

demand for investment goods (which add to the country's
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capital stock, or replace that which has become obsolete).

Income Y also falls into two parts:

Y = C + S . (2.4)

Here C is the spending on consumption and S is

saving.

On combining (2.2), (2.3) and (2.4) we have

S = I . (2.5)

For the present, I is regarded as fixed by the nature of

the economy. On the other hand, consumption and saving

are taken to be increasing functions C(Y), S(Y) of in-

come, where, of course,

C(Y) + S(Y) = Y . (2.6)

We call the derivatives c = C'(X), s = Sf(Y) the

marginal propensity to consume and to save respectively

and suppose that

0 < c < l , 0 < s < l , (2 .7 )

where

c + s = 1 (2 .8 )

by ( 2 . 6 ) .

The value Y = Y for equilibrium is determined by

(2.5), that is

S(YQ) = I . (2.9)

We now consider what happens if we change the

specification of the economy. Suppose, first, that in-

vestment is increased by a (small) quantity 6 . Then

by (2.9) the new value Y 1 of Y is

Yx = YQ + 6/s . (2.10)

Here 1/s > 1 is Keynesf famous multiplier. (Other

"multipliers" occur in the theory.)

Now suppose instead that I remains unchanged but

that people become more thrifty. Then the function

S(Y) is replaced by S (Y) , where

S*(Y) > S(Y) (all Y) . (2.11)

The equilibrium value Y of Y is now given by

S*(Y*) = I . (2.12)
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Clearly

Y* < YQ . (2.13)

Hence total income is diminished and the amount saved

S(YQ) = S*(Y*) = I (2.14)

remains the same. This is the Paradox of Thrift. If,

instead of treating investment I as a constant, we had

assumed, not implausibly, that it is a slowly increasing

function I(Y) of Y , then the paradox would have been

sharpened: increased thrift leads to an actual decrease

in the amount saved! [But cf. end of section 6.]

Note. In what follows, we shall generally denote the

quantity (2.2) by Y and refer to it as the GNP (gross

national product), though this is strictly Q .

3. Government

We now introduce government into the model. This

has two effects.

(i) There is a demand G from government for goods

and services. Hence total demand must now be written

Z = C + I + G , (3.1)

where C,I (as before) are (private) consumption and

(private) investment.

(ii) Government levies a tax T . It is natural

to assume that consumption and savings are functions of

income after tax:

C = C(Y-T) , S = S(Y-T) . (3.2)

Since Y = Z in equilibrium, we now have

Y = C(Y-T) + I + G (3.3)

or, what is the same,

S(Y-T) = I + G - T . (3.4)

If we suppose that G, T (and I) are fixed, then

(3.4) determines the gross national product Y .

If G is increased by 6 , the effect on Y is

the same as an increase of 6 in I , that is Y is

increased by 6/s approximately, where 1/s is the

multiplier.

If T is increased by 6 , then Y is decreased
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by 6(l-s)/s approximately. Under the reasonable

assumption that s < 0.5 , we have again a multiplier

> 1 .

If both G and T are increased by 6 , then Y

is increased by 6 (exactly).

Now, instead of considering taxation T as fixed,

suppose that it is an increasing function T(Y) of Y.

It is readily verified that the multiplier for changes

in G or I is now smaller than before, namely

l/{s + x(l-s)} (3.5)

where T = T' .

Finally, suppose also that G is a function G(Y)

of Y. The natural assumption to make here is that G

decreases when Y increases. When Y is small, in-

dustrial activity is low and so the State must pay un-

employment benefit etc. Put y = -G1 > 0 . Then the

multiplier for I is yet further decreased, namely

l/{s + x(l-s) + y} . (3.6)

4. Employment

Hitherto we have adopted the classical assumption

that the operation of the markets equates supply and

demand. Our own Professor Pigou wrote "With perfectly

free competition among work-people ... everyone will be

employed" (Theory of unemployment) - this in 1933 when

unemployment in the U.K. was about 20%.

As a simple way of introducing the possibility of

unemployment into the model, we assume that there is a

critical value Yp of the GNP (the full-employment

GNP) such that

(i) if Y < YF , there is unemployment;

(ii) Y > Y cannot occur, at least in an equi-

librium state. (An attempt to achieve it leads to

"overheating".)

We recall that the equilibrium GNP Y is given

by
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Yo = C ( Yo " T ) + I + G ' (4'1}

where we again consider I, T and G to be fixed. We

suppose that Government attempts to fix T and G so

that YQ = YF .

We have

d{C(Y-T) + I + G}/dY < 1 , (4.2)

and so Y < YF implies

Yp - C(Yp -T) - I - G > 0 . (4.3)

The left-hand side of (4.3) is the deflationary gap. To

eliminate it, the Government may increase G or de-

crease T or a combination of these. (Note that if G

is increased and T is decreased by the same amount,

then the deflationary gap is decreased.)

If, however, the values of I,T,G are such that

(4.1) would give a forbidden value Y > Y , then there

i-s a n inflationary gap

C(YT? - T) + I + G - Y > 0

and Government should decrease G or increase T .

Finally, suppose that, by good luck or good guidance,

I,G,T have been fixed so that there is precisely full

employment: Y = Y_ . Suppose also that Government

feels compelled to increase G (e.g. to fight a war).

Then, to avoid an inflationary gap, it must make a

greater increase in T . For a small increase 6 in

G , the increase in T should be 6/c , where

c = C'fY^ - T) < 1 . This is the balanced budget
r

multiplier theorem.

5. Prices

We must now introduce money explicitly into the

story. All the goods which are included in the aggre-

gates Y,I,G etc. are exchanged for money (say £'s

sterling). As the various parameters of the model

change, so do their prices. We shall suppose, however,

that all the prices move in step. We may therefore in-

troduce a parameter P , the level of prices. We shall
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denote by Y,C,I,G etc. the corresponding quantities

measured at constant prices (in real terms). Thus the

amount of money which must be paid for the goods com-

prised in (say) I when the price level is P is PI .

6. Interest

Hitherto we have regarded the rate of investment I

as fixed in our models. It is nowadays regarded as

natural to suppose that it depends primarily on the rate

of interest i , whieh we must now briefly introduce.

We suppose that there are bonds, which may be pur-

chased by the investor and which convey the riant to a

fixed payment annually in perpetuity (as Consols do in

Britain). Let £b be the price of such a bond yiel-

ding £1 per annum. The (annual) rate of interest is,

by definition, i = 1/b.

Keynes argued that i cannot, in the real world,

become arbitrarily small, because of the existence of

uncertainty in our sublunary affairs. Suppose that an

investor buys a bond yielding £1 per annum when the rate

of interest is i, , so the price is 1/i-, . If at the

end of the year the rate of interest is i~ » then he

will have a bond worth l/io together with £1 interest.

If i-. is already small, then the probability is that

the rate of interest will increase, and so the loss

) ~ (1/i-ô  -"-n ̂ he v a l u e °f the bond would far more-j )

than outweigh the £1 interest. This argument was

christened the liquidity trap by our own Professor

Dennis Robertson.

To revert to investment. It is supposed that the

saver has the choice of putting his money either into

bonds or into investment goods. If i is large, the

bonds are a "good buy" and there will be few investments

in investment goods which will hold out the prospect of

an equal return. Hence we assume that investment I

in such goods depends only on i and decreases as i

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511663024.008
Downloaded from https://www.cambridge.org/core. SUB Gottingen, on 28 Jul 2020 at 08:07:59, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511663024.008
https://www.cambridge.org/core


105

increases, that is

I = I(i) , I'd) < 0 . (6.1)

These arguments are relevant to the "Paradox of

Thrift" [cf. (2.14) ] . If people become more thrifty and

try to save more, the demand for bonds will increase.

The price of bonds increases; that is, the interest

rate falls. Now investment I increases. But S = I,

so S increases. The effect of an increase in thrift

on the gross national product Y (increase or decrease)

in a model of an economy with bonds depends on the pro-

perties postulated for the model.

7. Money

We suppose that there is a certain amount of money

M circulating in the economy. It has to be explained

why people prefer to hold money (remain liquid), when

they could invest it profitably in industry or in bonds.

Bowdlerizing Keynes we distinguish two kinds of reason.

(i) Speculative and precautionary motives. We

have already touched on these in the discussion of the

liquidity trap. People may hold money because they

think that they may be able to invest it more profitably

later when there is a change in the economic climate.

Alternatively, they may feel the need to be in a

position to react quickly if disaster strikes unex-

pectedly. Denote the money held for either of these

reasons by L-. . When interest rates are high, so is

the temptation to buy bonds. Hence it is supposed that

L-. depends only on the rate of interest i , and

decreases as i increases.

(ii) Transactions motive. People need to hold

money in order to carry out their business transactions.

It is reasonable to suppose that the total amount L^

of money held for this reason depends on the amount of

business to be transacted. We therefore suppose that

L2 depends only on the GNP Y and increases as Y
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increases.

In the above argument it is clear that what matters

is not the nominal amount of money M but the amount

of money M/P in real terms (cf. §5). Hence we have

M/P = Lx(i) + L2(Y) (7.1)

or, more generally,

M/P = L(i,Y) (7.2)

where

8L/3i < 0 ; 3L/8Y > 0 . (7.3)

We have already (in §3) envisaged the possibility

that the demand G of government for goods etc. is not

equal to the taxes T which it levies. The government

must, however, pay for what it uses. If G > T one

possibility is that it creates ("prints") the additional

money necessary. [This was not possible in the old

days: "money" meant silver bullion to Adam Smith.]

Alternatively, government may create and sell bonds to

finance the deficit G-T . If T > G , so the govern-

ment collects more than it spends, these processes are

put in reverse.

8. The labour market

We suppose that the level N of employment (i.e.

the number of people employed) and the GNP determine

each other, say

Y = Y(N) Y1 > 0 . (8.1)

As already explained, we do not necessarily suppose

that the labour market is in equilibrium. We denote by

W the wage in money terms, so W/P is the real wage.

We suppose that the demand ND for labour depends only

on the real wage, say

W/P = cj)(ND) , c))1 < 0 . (8.2)

We also suppose that the supply Ng of labour depends

only on the real wage

W/P = t|/(Ns) , *' > 0 . (8.3)

By full employment we mean that the labour market
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clears. This occurs at a wage W and level Np of

employment such that

W/P = <|>(NF) = *(Np) . (8.4)

Hence the full level of employment N_ and the corres-

ponding W/P are uniquely determined. Then (8.1) de-

termines the full-employment GNP Yp , which was intro-

duced in §4, by

YF = Y(Np) . (8.5)

9. Full employment

We now have all the ingredients for what is now

called the classical model. By (3.4) we have

S(Y-T) - G+T = I(i) , I1 < 0 ; (9.1)

and for convenience we recall (7.2),(7.3):

M/P = L(i,Y) 3L/3i < 0 , 3L/8Y > 0 . (9.2)

Here M,G,T are supposed to be given. Under conditions

of full employment Y = Yp is given. Then (9.1) de-

termines the rate of interest i and, finally, (9.2)

gives the level of prices P . It is fortunate that

our collection of simultaneous equations can be solved

in this simple manner.

We now consider the effect on the model of various

changes.

(i) We note first that M occurs only in the com-

bination M/P . Hence the quantity theory of money

holds in its crudest form: if the money-supply M is

doubled, then the level of prices P is doubled but

nothing else is affected.

(ii) Suppose that the government increases its

expenditure G but leaves taxes T and money supply M

unchanged. The GNP remains unchanged at its full-

employment level Y = Y . By (9.1) investment I

must decrease, and so interest i increases. [We can

explain this, recalling that government finances its

deficit by issuing bonds: more bonds are issued, so

they become cheaper.] Then M/P decreases by (9.2);
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but M is fixed so P increases. This is an example

of a demand-pull inflation.

(iii) Suppose that labour demands a higher wage, i.e.

that the function ty in (8.3) is replaced by a new and

larger function of Ng but everything else is unchanged.

Then the level N_ of full employment decreases and

hence so does Y = Yp . By (9.1) we have again an in-

crease in i and so by (9.2) an increase in P . This

is a cost-pull inflation.

(iv) This is a more radical change. We suppose

(halcyon days!) that the labour force is unaware of the

possibility of inflation, and that the supply of labour

depends not on the real wage W/P but on the money

wage W . (Monetary illusion.) Instead of (8.3) we

thus have

W = iKNs) * *' > 0 ; (9.3)

and so the level of full employment Np and the corres-

ponding wage now depend on the price level P , being

given by

W/P = c|>(NF) / W = iMNF) • (9.4)

Hence full-employment GNP Yp also depends on P . The

solution of the simultaneous equations (8 .1) ,(9.1) ,(9.2)

and (9.4) is no longer so easy. It is left to the

reader to verify that an increase in G now leads to

an increase in Y as well as the effects described in (ii) .

10. Unemployment

We now suppose that unemployment is present and so

the considerations of §8, which give the value of the

GNP Y, no longer apply* Equations (9.1),(9.2), however,

continue to hold. For fixed values of G,T,M,P each gives

a relation between Y and i. We plot them on a diagram

with Y horizontal and i vertical (the Hicks diagram,

so called after the Oxford economist who introduced it).
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Figure 6.

"classical
pole"

"depression pole"

The Hicks diagram
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The graph of (9.1) is traditionally called the

IS-curve. Since S increases with Y but I decreases

with i , the value of i on this curve decreases as

Y increases. The graph of (9.2) is the LM-curve. The

properties of L(i,Y) imply that on it i increases

as Y increases. Hence the two curves intersect (if

at all) at a single point, which gives Y and i .

The liquidity trap argument of §6 implies that i

tends to some i > 0 as Y -> 0 . There is thus an

almost horizontal portion of the LM-curve when Y is

small. This is called the depression pole and is said

to represent the situation when there is little economic

activity, as in the 1930's.

It is reasonable to assume that there is a limit

to the amount of production Y which can be financed

by a given amount of money M/P in real terms. Hence

as Y increases the LM curve will approach a hori-

zontal asymptote. The nearly vertical portion of the

LM-curve is the classical pole. It is alleged to des-

cribe the situation described by the classical economists

(i.e. before Keynes).

We are now in a position to consider the effects

of changes in the parameters. We suppose that the

price-level P remains fixed and distinguish:

Monetary changes, i.e. changes in M . These

affect only the position of the LM-curve. An increase

in M moves it to the right, roughly speaking.

Fiscal changes, i.e. changes in T and/or G .

These affect only the IS-curve. An increase in G (or

a decrease in T) moves it approximately to the right.

We also distinguish cases according to the position

of the LM-curve of its intersection with the IS-curve.

Classical pole. Here an increase of M increases

Y and decreases i slightly. On the other hand,

fiscal changes have hardly any effect on Y but an in-

crease in G (or a decrease in T) increases i .
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Depression pole. A change in M has little

effect on either Y or i . On the other hand, an

increase in G (or a decrease in T) increases Y

substantially but increases i only minimally.

11. The long term

Investment has played a key role in the earlier

part of this chapter but it has been a singularly un-

motivated activity. Its purpose is, of course, to

maintain or increase the community's capital stock K .

In the long run, changes in K will affect the func-

tional relationships between the other parameters in the

economy, e.g. by reducing the labour required for a

given output. One might ask, for example, how one

should best allot production between consumption and in-

vestment so as to maximize the welfare of the community

over all future time: if too much is consumed then

future generations will have an inadequate stock of

capital but it is equally possible to invest too much

and so provide inadequately for present enjoyment.

Pioneering work on this question was done by the young

Cambridge mathematician Frank Ramsey. To give any

reasonable introduction to these questions would go far

beyond the modest aims of this book (not to mention the

competence of its author), and we shall confine ourselves

to a couple of 5-finger exercises which give something

of the flavour.

For our first model we suppose that the capital

stock is indestructible and never gets out of date. If

K(t) is the capital stock and I(t) the investment

at time t , then

K(t+1) = K(t) + I(t) . (11.1)

We suppose that output depends solely on the capital

stock, say

K(t) = vY(t) (11.2)

for some constant v . Suppose, also, that saving (and
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so investment) is proportional to income, say

I(t) = sY(t) . (11.3)

On eliminating Y(t), I(t) from (11.1)-(11.3) we have

K(t+1)/K(t) = d+gQ) / (11.4)

where

gQ = s/v (11.4 bis)

is Harrod's warranted rate of growth. The whole econo-

my thus expands at the rate (1+g ) . Now suppose that

production also depends on labour N , but only in the

sense that units of capital require a constant amount of

manning. This leads to the production function

Y = min(N/u,K/v) (11.5)

for constants u,v . Suppose also that N has a

natural rate of growth, say

N(t+1) = (l+g)N(t) . (11.6)
I f 9 > 9O i the GNP Y(t) will increase at the warranted

rate but there will be unemployment. If, however,

g < g , then the GNP can increase only at the slower

rate (1+g) , and capital is accumulated which cannot

be used.

In our second model it is convenient to suppose

that the capital stock is consumed every year and so the

new capital stock must be taken from each year's pro-

duction. (It is seed corn rather than blast furnaces.)

Output depends only on the capital K and the labour N

employed. There are constant returns to scale, so

Y = Nf(k) , k = K/N (11.7)

where k is the capital intensity. The marginal pro-

duct of labour

3Y/3N = f(k)-kff(k) (11.8)

is the wage. The marginal product of capital

8Y/3K = ff(k) (11.9)

gives the rate of interest f'(k)-l , since a saving of

one unit at time t gives an output of f'(k) at time

t+1 .
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We now suppose that the population grows at a con-

stant rate:

N(t+1) = (l+g)N(t) (11.10)

and that the economy expands perfectly steadily so that

the per capita capital k and the per capita consump-

tion c remain constant. The output Y is divided

between capital and consumption:

Y(t) = K(.t+1)+C(t+1)

= (k+c)N(t+l)

= (1+g)(k+c)N(t) . (11.11)

Hence

(1+g)(k+c) = f(k) . (11.12)

The community, if it is wise, will allocate its income

between consumption and saving so as to maximize c ;

that is k = k* , where

f! (k*) = 1+g . (11.13)

This is the golden rule: that the rate of interest

should be equal to the rate of growth.

Since Y is homogeneous, we have

Y = N3Y/9N + K8Y/3K . (11.14)

It is readily verified that at the golden rule capital

intensity k = k one has

(N8Y/8N)(t) = C(t+1) (11.15)

(K3Y/3K)(t) = K(t+1) . (11.16)

Here (11.15) says that consumption is equal to the

total amount of wages and, similarly, (11.16) states

that investment equals the profits of capital.
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DEFINITION OF SYMBOLS

C : consumption (§2) at constant prices (§5)

c : marginal propensity to consume (§2). But used for

per capita consumption in §11

G : Government demand (§2) at constant prices ( § 5)

g : the rate of expansion in §11 is 1+g

I : investment (§2) at constant prices (§5)

i : rate of interest (§6)

K : capital stock (§11)

k : capital intensity (per capita amount of capital)(§11)

L : the liquidity function (§7)

M : money supply (§7)

N : level of employment (§8)

N : level of full employment (§8)

P : level of prices (§5)

Q : total output. Identified with Y in steady

state (§2)

S : saving (§2) at constant prices (§5)

s : marginal propensity to save (§2)

T : taxes (§3)

t : index denoting time

W : wage (in money terms) (§8)

Y : total income of factors of production. Referred to

as GNP (= gross national product) (§2). It is

valued at constant prices (§5)

Yp: full-employment GNP (§§4,8)

Z : aggregate demand. Identified with Y in steady

state (§2)
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Further reading

R.G.D. Allen. Macro-economic theory (Cambridge U.P.,
1967) .

E. Burmeister. Capital theory and dynamics (Cambridge
U.P., 1980).

R.L. Crouch. Macroeconomics (Harcourt, Brace,
Jovanovich, 1972).

G. Hadley and M.C. Kemp. Variational methods in
economics (North Holland, 1971).

P.A. Samuelson. Economics (McGraw Hill, Kogakusha,
n-th edition, n -> °°) .

S.J. Turnovsky. Macroeconomic theory and stabilization
policy (Cambridge U.P., 1977).
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Chapter 6 Exercises

1. Consider the effect of changes of thrift (as de-

fined in §2) on the model described in §10. Simi-

larly for changes in the "propensity to invest"

Ki) •

2. A certain country has an entirely agricultural

economy. All prices, wages etc. are expressed in

terms of agricultural produce. The total number

of workers is W . There are a number of village

sites V. . If there are t workers in V^ ,

then they produce f.(t) of agricultural produce,

where

f±(0) = 0 , f'(t) > 0 , f"(t) < 0 (t > 0) .

We consider several different types of economy.

(i) (Primitive.) There are x.̂  workers at

V. and they each receive f.(x.)/x. . They migrate

until this is equalized. Show that there is a con-

stant X such that

x. = 0 if f!(0) < X

f.(x.) = Xx. otherwise.

(ii) (Socialist.) Here y. workers are

assigned to the village V. so as to maximize

total output, which is then equally divided among

all the workers. Show that there is a constant Y

such that

y± = 0 if f!!(0) < Y

f'(y.) = Y otherwise.

Show that the wage is greater than under primitive

conditions and that in general some villages are

populated which are not populated in the primitive

state.

(iii) (Capitalist.) Each village has a land-

lord (who is not a worker). Landlords pay workers

a wage Z (in agricultural produce), the same for

all villages. The landlord of village V^ selects
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the number z. of workers to maximize his profit
Ri = fi ( zi ) " Zzi = maxtf±(t) - Zt} .

He uses the profits to employ workers to make

luxuries, paying them the wage Z , so that the

total number I of workers in the luxury trades

is given by

The wage Z is determined by the condition

I + Ez. = total work force (= W) .

Show that

(a) X > Z (wage under capitalism is less

than primitive wage).

(3) In general more villages are populated

under capitalism than under primitive society, but

fewer than under socialism.

(y) Total agricultural production Zf.(z.)

under capitalism is less than primitive production

(6) Total production of agriculture plus

luxuries (valued at labour content) under capi-

talism is greater than total primitive production.

[J.S. Cohen and M.L. Weizman in: Mathematical

models in economics (J. and M.W. £,os, editors)

1974. ]

(Inventory cycle.) (i) A manufacturer makes a

good G . The process takes a year, and the only

input is the good G itself. The production of

a unit of G (net) requires the input of X units

of G . Let b(t) be the stock (American:

inventory) of G held at the beginning of year t

and let a(t) be amount of G manufactured in

that year, so 0 < a(t) < X"1b(t) . At the end

of each year a quantity e (independent of t) is

consumed. Show that

= b(t) + a(t) - e .
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(ii) Each year the manufacturer endeavours to

bring his stock up to an amount which would have

sufficed to produce the amount manufactured in the

previous year, together with an allowance for con-

tingencies. He thus aims at a stock &a(t-l) + m ,

where £ > X and m > e are fixed. Show that he

manufactures a(t) , where

a(t) =

0 if a*(t) < 0

X"1b(t) if a*(t)

a (t) otherwise ,

and

a*(t) = Jla(t-l) + m - b(t)

(iii) Show that there is a single fixed point

(5,5) , in the sense that a(t) = a , b(t) = b

implies a(t+1) = a , b(t+l) = b .

(iv) If I > 1 , show that the fixed point

(a,b) is unstable. For certain values of the

parameters A,£,m , show that (a(t),b(t)) remains

bounded as t •> °° and is infinitely often on each

of the "slump line" a(t) = 0 and the "boom line"

a(t) = X" b(t) . For other values of the para-

meters, show that a(t) -* °° , b(t) •> °° along the

boom line.

[Hint. If (a(t),b(t)) and (a (t+1) , b (t+1))

are not on the slump or boom lines, show that

a(t) = a(t) - a , 3(t) - b satisfy

a(t+1) = U-l)a(t) - B(t)

3(t+1) = a(t) + 3(t) .

Note. The scenario gains in plausibility if there

are several goods produced in a closed Leontieff

model (cf. Chapter 5, §2). For mathematical trac-

tability one is then led to make the (implausible)

hypothesis that all occurring bundles of commodi-

ties are multiples of the Sraffa bundle. This
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comes back to the model above. See J.T. Schwartz,

Lectures on the mathematical method in analytical

economics, and, for an extension, his Theory of

money.]

Verify (11.15) and (11.16).

[For generalization cf. E.S. Phelps, Second

essay on the golden rule of accumulation. Amer.

Econ.Rev. 55̂  (1965), 793-814.]

Let Y* = PY be the GNP in money terms and simi-

larly for S*,I* etc. Consider a model of the

world in which S depends on Y - T*, I* depends

on i and the demand for money is a function

L*(i,Y*) . On replacing (9.1),(9.2) by

S* (Y*- T*) - G* + T* = I*(i) ,

M = L*(i,Y*) ,

show that the nominal GNP Y* is determined for

fixed G*,T* by the money supply M .

[Reference. F. Modigliani. Econometrica,

12 (1944), 45-92.]
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APPENDIX A

Convex Sets

1. Fundamentals

Definition.

X £ o
 +

A set

(1-A)^

whenever c , c-. e C

Corollary.

K

v - i X k £ k

Jv~~ JL
Lemma 1.

C° and the

Let K

£ C

Suppose

closure

Proof. Clear.

Lemma 2. Let C

C c

£ C

•

> 1

that

C

Rn

and

C

are

be convex

is convex if

let c1#

is convex

convex.

Then

(0 <

• • • z

(Xk

the

A < 1)

CR £ C

> 0, I)

Then tl:

two fo]

Then

statements are equivalent.

(i) the interior C° is not empty;

(ii) for any c^ e C there are £,,...,£ e C such

that £•-£Q (1 < j < n) are linearly independent.

Proof. (i) •> (ii) . Trivial without hypothesis of

convexity.

(ii) •+ (i) . By the Corollary to the defi-

nition (K = n+1) the set C contains the simplex with

vertices c^ ,0^,...,£n

Lemma 3. Let C be convex. If C° is not empty, then

its closure is C .

Proof. Clear.

Theorem 1. Let C be convex and open. Let b / C .

Then there is a hyperplane H through b which does not

meet C .

Note. Hence C lies entirely on one side of H .

Proof. We may suppose without loss of generality that

b = 0

is the origin.

n = 2. We say that r e A if there is a t > 0 such
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that (t,rt) e C . Clearly A is non-empty and open.

Similarly r e A if there is an t < 0 such that

(t,rt) e C ; and A is non-empty and open. If

r e A n A*", we should have 0 e C by convexity: so

A , A are disjoint. Since the real line is connected,

there is thus an r / A , / A~ . Then the line (t,rt)

(-00 < t < °°) does not meet C .

n > 2. By considering any plane through 0 and its

intersection with C , there is certainly a line L

through 0 which does not meet C . Consider the pro-

jection

TT : RR - Rn/L = R11"1 .

The projection TTC is clearly open and convex, and it does

not meet the origin of Rn/L by the construction of L .

By induction, there is a hyperplane P of R /L which

does not meet TTC . Then H = TT P is a hyperplane of

Rn not meeting C . This concludes the proof.

Let now C be convex with non-empty interior and

let f be a point of the frontier of C (i.e.f_ e C;:f / C°).

By Theorem 1 applied to C there is a hyperplane H

through f_ which does not meet C . It is called a

tac-hyperplane to C at .f and is not necessarily unique.

By Lemma 3 , C lies entirely in one of the two closed

half-spaces defined by H . When the frontier of C

has a tangent hyperplane at _f , then it is clearly the

unique tac-hyperplane at f_ .

Lemma 4. Let C, (AcA) be a family of convex sets in

Rn . Then

nC
A A

is also convex.

Proof. Follows from definition of convexity.

Let S be any set in Rn , and let

C = nD (D convex, D => S) .

Then C is convex (by Lemma 4) and C => S . It is

called the convex cover (American: convex hull) of S .
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In a strict sense it is the smallest convex set which

contains S .

Lemma 5. The convex cover of a set S is the set of

points £ which can be represented as

K
c = Z X,sv (*)

k=l K" K

for some

K > O , s k € S , X k > O , EXk = 1 .

Proof. Any convex set which contains S must contain

£ . Further, the set C* of points of the shape (*) is

readily verified to be convex. Hence C is the convex

cover.

2. Separation theorems

In this section we show that a pair of disjoint con-

vex sets can (in some sense) be separated by hyperplanes.

There are a number of variants, and in the text we shall

mainly require only one application (Lemma 8).

The following Lemma will be superseded by Theorem 2.

Lemma 6. Let C c R be convex and suppose that 0 / C.

Then there is a v =(= 0 such that

V£ > 0 (all £ e C) . (£)

Proof. (i) Suppose, first, that the interior C° of C

is not empty. By Theorem 1 there is a hyperplane vx = 0

through 0 which does not

for v if need be we have

vx > 0 (all x e C°) .

Then (£) follows from Lemma 3.

(ii) Otherwise, C° is empty and so, by Lemma 2,

there is a w =f 0 and q such that C lies entirely

in the hyperplane

H : wx + q = 0 .

If q =f 0 , we can take v = ± w . If, however, q = 0 ,

then the result follows by induction on n , on considering

the (n-1)-dimensional linear space H .
If S, ,S2

 c Rn , then we denote by si~S9 t h e s e t o f

through 0 which does not meet C°; and so on taking -v
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x which can be put in the form x = s-,-so (s. e S.) .

Lemma 7. Let C.j,C2
 c R t>e convex. Then

t~* — f~* Z*"1

L • Ll " C2
is convex.

Proof. Follows at once from the definition of convexity.

Theorem 2. Let C,,C2 be convex and disjoint. Then

there is a v =f 0 and a q such that

vc-. > q (all c^ e C-^)

vc_2 < q (all c2 € C2) .

Proof. C = C-. - C2 is convex by Lemma 7, and so by

Lemma 6 there is a v =f 0 such that

v(c1 - c2) > 0 (all c. € Cj) .

Hence

inf vc, > sup v£2 ,

and the existence of q follows.

Note. Lemma 6 is the special case in which C2 is a

single point.

A set K c Rn is called a cone if k <EK implies

Xk e K for all X > 0 . We denote by ft the open

positive orthant in Rn :

ft = {x : x >> 0} .

Lemma 8. Let K be a convex cone in Rn . Then pre-

cisely one of the two following statements holds:

(i) K n ft is not empty,

(ii) There is a £ > 0 such that

£k < 0 (all k e K) .

Proof. It is clear that (i) and (ii) cannot hold simul-

taneously. Suppose that (i) is false. Then by

Theorem 2 there is a v ^ 0 and a q such that

vx > q (all x € ft) (@)

yjc < q (all x e K) .

Now (@) implies readily that v > 0 and then that

q < 0 . Hence £ = v satisfies (ii) .

Corollary. Let the matrix D have n rows and m

columns. Then precisely one of the two following state-

ments holds:
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(i) Dt >> 0 for some t > 0 in Rm .

(ii) £D < 0 for some £ > 0 in R

Proof. We can take

K = {x: x = Dt for some t. > 0} .

Although we do not need the results, there is some

interest in pursuing the ideas further.

Lemma 9. Let C be both convex and closed. Suppose

that 0 / C . Then there is a v =)= 0 and a 6 > 0 such

that

vc > 6 (all c e C) .

Proof. Since C is closed, there is an n > 0 such

that the closed spherical ball B of radius ri and

centre 0 does not meet C . By Theorem 2 with

C-, = C , C2 = B there is a v and a q such that

vc > q (all c 6 C)

where

q > sup vs (j3 £ S)

> 0 .

Hence 6 = q will do.

Note. If 0 i C , where C is convex and is either open

or closed, there is a v =f 0 such that vc > 0 for all

c_ € C by Theorem 1 (C open) or Lemma 10 (C closed) . If

C is neither open or closed, no such v need exist.

Consider for example n = 2 where C consists of the

points with 0 < x.. < 1 , |x2| < 1 together with

(xlfx2) = (0,1) .

Theorem 3. Let C-. ,C2 be a disjoint pair of closed

convex sets. Suppose that at least one of C w C 2 is

bounded. Then there is a v =f 0 such that

inf vc. > sup v_£2 (£. e C .) .

Proof. The conditions imply that C = C-, - C2 is

closed. The proof now follows that of Theorem 2, but

uses Lemma 10 instead of Lemma 6.

Note. The conclusion may cease to hold if C.,C2 are

both allowed to be unbounded. Consider n = 2 and

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511663024.009
Downloaded from https://www.cambridge.org/core. SUB Gottingen, on 28 Jul 2020 at 08:07:59, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511663024.009
https://www.cambridge.org/core


125

c
c

There

vc2 <

is

0

: X]_
: XX

not

for

> 0
> 0

even

all

3. Differential

, x2 > 0
, x2 < 0 .

a v 4 0

£ j e Cj .

properties

X1X2

such that vcn > 0 and

We require this section only for n = 1. . However,

the general case illuminates some of the other results

which are obtained in other ways, and can be used to pro-

vide alternative proofs of them.

Definition. Let C c Rn be convex and have non-empty

interior C° . A function f : C •* R is said to be

convex if the (n+1)-dimensional set

(x,y) x e C y > f(x)

is convex. This is obviously equivalent to the condition

f(XxQ + (l-XJx^) < Xf(xQ) + (l-XJftx^)

for

x o , x 1 ^ C , 0 < X < 1 .

Theorem 4. Suppose that f has continuous second

derivatives

i j — i j
Then the two following statements are equivalent

(i) f is convex ;

(ii) the quadratic form

Q(x)(Xx,...,Xn) = Efij(x)X1Xj

is positive definite or semi-definite for all ae C.

Note. We shall be concerned only with the case n = 1 ,

when x = x is scalar and (ii) becomes simply

f"(x) > 0 .

Proof. n = 1, (i) -> (ii) . Let x e C° and

y = f(x ) . The tangent

y - yo = f'(xo)(x-xo)

is a tac line, so

f (x) - f (xQ) > f f (xQ) (x-xQ)

for all x e C . On letting x •> X Q / we get f"(xo) > 0 .

By continuity, f" (x) > 0 for all x e C .
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n = 1, (ii) -> (i) . We have to show that

f (XxQ + (1-X)x1) < Xf(xQ) + (l-Xlf^) (§)

whenever

xo'xl e C ' 0 < X < 1
and, without loss of generality,

xo K xl •
The difference between the two sides of (§) is

X{f(AxQ + (l-X)Xl) - f(xQ)}

+ (l-X){f(XxQ + (l-X)Xl) - f(x1)} .

By the Mean Value Theorem applied to each bracket, this

is

X(l-X)(Xl-xo){f
f(?1) -f'(52)>

where

xQ < E>± < XxQ + (1-X)x1 < ?2 < x± .

A second application of the Mean Value Theorem gives

f(?1) - f • U2)

* 0 ,

as required .

n > 1. Follows from n = 1 by considering the res-

triction of f to C n L , where L is any line in Rn.
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Appendix A Exercises

For S,T c Rn show that

con(S+T) = con(S) + con(T) ,

where con(S) is the convex cover of S and S+T

is the set of £>+t (s e S, t e T) .

(Shapley-Folkman). Let S, c Rn (l<t<T) , and let

£ e con(Z S.) .
t t

Show that

c = Z b t ,

where b, e con(S.) for all t and b. e S.

except for at most n values of t .

[Hint.

t l<j<J(t) ZJ rD

for some J(t) , some s> . e S, and some A. . > 0

with E A. . = 1 . Choose a representation for

which E J(t) is minimal. If E J(t) > T+n ,
t

then the vectors

of Rn are linearly dependent. Use this to eli-

minate one of the s, . , contrary to the minimality
—T.J

hypothesis. cf. Cassels, Math.Proc.Camb.Philos.

Soc. 78 (1975), 433-436.]
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APPENDIX B

The Brouwer fixed point theorem

Theorem (Brouwer). Let f be a continuous map of a

closed n-dimensional simplex S into itself. Then f

has a fixed point: that is, there is an ^ e S such

that f(s) = s .

This is a topological theorem, and so holds for any

topological space homeomorphic to a simplex, e.g. a

closed ball. We have, however, enunciated it in the

form in which it is used in the text, and in which it is

proved below. We take S to be the convex cover of the

unit points in Rn : i.e. the set of

x = (xQ,...,xn) £ R
n+1 (1)

such that

S : Xj > 0 (0 < j < n) ; E X j = 1 . (2)

Let us consider a situation whose relevance will

appear only later. Denote by V\ (A e A) a simplicial

decomposition of the (n+1)-dimensional set

U : x. > 0 (0 < j < n) ; Ex. > 1 . (3)

[That is, the V\ are (n+1)-dimensional simplices,

U = uV, , and two of the V, intersect, if at all, in an

r-dimensional face of each with r < n . The diagram

illustrates n = 1 .] The n-dimensional faces of the

V, will be called facets. We make the additional hy-
A

pothesis that S is a facet. Every vertex v of the

V\ has a label

<J>(v) € {0,1,...,n} . (4)
The label is subject to the condition

(J)(v) = i => v± > 0 , (5)

where v. is the ith coordinate: but is otherwise

arbitrary.

A facet F of the decomposition has n+1 vertices.
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x
(0,0)

This illustrates the case n = 1 of Lemma 1.
The completely labelled facets produced by the
proof algorithm are marked.
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It is said to be completely labelled if the labels of the

vertices are the complete set {0,1/-. ,.,n} .

Lemma 1. There are infinitely many completely labelled

facets.

Proof. The condition (5) uniquely determines $(v) for

the vertices of S , and S is completely labelled. Any

facet F ^ S which is on the boundary of U lies on

one of the hyperplanes x. = 0 , and so by (5) cannot be

completely labelled.

If <f> maps the n+2 vertices of a simplex V\ on

to the complete set {0,1,...,n} , then V, has pre-

cisely two completely labelled facets. Otherwise it

has no completely labelled facets.

The completely labelled facet S belongs to pre-

cisely one simplex V, (say) . Hence V, has precisely

one other completely labelled facet S-. . Then S-, is

not on the boundary of U , and so is a facet of pre-

cisely one other simplex V^ . Now V- has precisely

one completely labelled facet S2 ^ S-, . In this way

we obtain a uniquely determined sequence S, S,,S2, ...

of completely labelled facets. Further, S, determines

the pair S, ^ '^k-1 uniquely; and so the

S, (k = 1,2,...) are distinct. This proves the Lemma.

We shall now make two further assumptions:

(a) the vertices of the V, have integral

coordinates

(3) every V, is contained in a cube of unit side.

Much weaker conditions than (a),(3) would have suf-

ficed for our purposes. A proof that such a simplicial

decomposition exists is reserved until the end of this

Appendix. Denote by TT"(U) the projection of u e U on

to S with centre the origin, i.e.

TT (u) = yu e S , (6)

where y = (Zu.)~

Corollary. Suppose that (a),(3) hold and let 6 > 0
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be arbitrarily small. Then the diameter of TT (T) is

greater than 6 for only finitely many facets T .

[The diameter of a set is the supremum of the distance

between any two of its points.]

Proof. Clear.

We now revert to the proof of the Theorem. We label

the vertices v of the simplicial decomposition V, as

follows. Put

S = 7T (V) £ S .

Then (v) is any index i for which

f±(s)

Since

If. (s) = Is. = 1
j J J

there is certainly such an i unless f (s) = ŝ

^ would be a fixed point and we should be done

this labelling satisfies the condition (5).

Let T be a completely labelled facet, say with

vertices v ^ such that $(v ) = j (0 < j < n) .

Put

(7)

(8)

(9)

when

Clearly

s
( j ) = e S

Then

sj
(j)

by the definition of $

the convex cover of the

of f ,

Let

(10)

(11)

€ S be any point in

Then by the continuity

for any given e , provided TT(T)

such T exist by the Corollary.

(0 < j < n)

is small enough:

But

|fj(£) - Sjl ̂ ne

and so

(1 < j * n)

(12)

and

(13)

that isf £ is approximately fixed by f .

As e + 0 , we obtain points £(e) . They must

have a limit point £* . Clearly f(5*) = £* , and we

have the required fixed point.
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It remains to show that there is a simplicial de-

composition V, of U with all the stated properties.

Lemma 2. Let

W : 0 < x. < 1 (1 < j < n) (14)

be the unit cube in R and let Z be the simplex

z : x. > 0 , Ex. < 1 . (15)

Then there is a simplicial decomposition of W such that

(a) the vertices of the decomposition are vertices of

W and (b) Z is one of the simplices.

Proof. Let W be the face x = 0 of W . By in-

duction on n there is a decomposition of Wn of the

required kind into (n-1)-dimensional simplices. For

1 < j < n-1 let W. be the face x. = 1 of W . By

induction, there is a simplicial decomposition of W.

whose vertices are the vertices of W. . Every

(n-1)-dimensional simplex in the decomposition of

W-j,W2,.-./W gives an n-dimensional simplex on taking

the convex cover of the union of itself and the point

(0,...,0,l) . This clearly gives the required simpli-

cial decomposition of W .

Corollary. There is a simplicial decomposition of R

whose vertices are the points with integral coordinates,

one of the simplexes being Z .

Proof. Extend the decomposition of W to the whole of

Rn by repeatedly taking the mirror image in the faces

of W . Alternatively, one can arrange that the de-

composition of Lemma 2 induces the same decomposition

on opposite faces of W .

Finally, we get the required decomposition of U by

taking n+1 for n in Lemma 2, Corollary and restric-

ting to U .

In conclusion, we note that the above proof gives

an efficient algorithm for finding "almost fixed" points

of f . We have used the account of G. Debreu, which

employs ideas of Scarf and Eaves.
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Addendum. Kakutani f s theorem

This is a generalization of Brouwer's theorem. Let

C be a bounded closed convex set in Rn . For each

£ £ C let F (c_) c c be a non-empty closed convex set

(which may be of lower dimension, or indeed only a single

point). The correspondence c_ -* F(c) is upper semi-

continuous: that is the set of points (c,f),f e F(£)

is closed in C*C . Then Kakutanifs theorem asserts

that there exists a c* e C with c* e F(c*) .

It is enough to consider the case of a simplex. For

choose any simplex S D C . We may extend the definition

of F to S by putting F (s_) = F(c_(sO) , where £(js) is

the point of C nearest to ^ (so £(s.) = s, if s_ e C).

The extended correspondence has the same fixed points as

the original one.

We show here that the proof given above of Brouwer's

theorem can be modified so as to give a proof of

Kakutani's theorem.

Lemma 3. Let jz-if • • • / z- + 2
 € R R a n d suppose that no n

of them are linearly dependent. Then there are either

0 or 2 subsets E c {l,...,n+2} of cardinality n+1

such that the origin 0 is in the convex cover of the

lj/ j e E .

Proof. Left to reader.

We now adopt a different definition of label.

Instead of (4) we take
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*(v) € T , (16)

where T c R is the hyperplane

£ x. = O , (17)

0<j<n J

with the condition

v ± = o => (*(v))i > 0 . (18)

We say that a facet of our simplicial decomposition

is well-labelled if 0 is in the convex cover of the

labels of the vertices.

Lemma 4. There are infinitely many well-labelled

facets.

Proof. It is left to the reader to verify that (18)

implies that the facet S given by (12) is well-

labelled (e.g. by Lemma 9 of Appendix A).

Let us first suppose (general position) that no n

of the labels on any facet are linearly dependent. Then

(18) implies that no facet which lies on a coordinate

hyperplane can be well-labelled. By Lemma 3 every sim-

plex has either 0 or 2 well-labelled facets. Hence,

exactly as in the proof of Lemma 1, there is a sequence

S/S-j^S^/*** (19)

of distinct well-labelled facets.

If the labelling is not in general position, the

above proof breaks down in several places. However, it

is not difficult to see that every labelling is a limit

(in an obvious sense) of labellings in general position:

and so a standard compactness argument (diagonal process)

gives a sequence (19). There is a more constructive

variant of this argument. Let iMv) be any labelling

in general position and let t be a variable over R .

We order the field R(t) by t > 0 but t < b for any

b > 0 in R . Then (j) (v) + tip (v) is a labelling in

general position over R(t) in an obvious sense. Hence

it gives rise to a unique sequence (19) of facets

well-labelled for <|)(v) + tip (v) over R(t) . These

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511663024.010
Downloaded from https://www.cambridge.org/core. SUB Gottingen, on 28 Jul 2020 at 08:07:59, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511663024.010
https://www.cambridge.org/core


135

facets are clearly also well-labelled for $(v) over

R , which concludes the proof of Lemma 4.

We now prove Kakutanif s Theorem for S . Take

*(v) = f - s , (20)

where JS = TT (V) , as in (7) , and where £ e F (s) is

selected arbitrarily. Then the hypotheses of Lemma 4

are satisfied, and so, as in the proof of Brouwer's

theorem, there are arbitrarily small simplexes with ver-

tices _s(0) , ...,s ( n ) (say) and with f(j) e F(£(j))

such that 0 is in the convex cover of the £ - . ! > . •

By compactness and the hypothesis of upper semi-

continuity, there is an s* e S and there are

f*(j) e F(s*) (0 < j < n) (21)

such that 0 is in the convex cover of the f* jL* •

But then s* e F(^*) by the hypothesis that F(s) is

convex for all £ . This is just the conclusion of

Kakutanifs theorem.
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APPENDIX C

Non-negative matrices

There is a rich theory of square matrices whose

elements are non-negative real numbers, which was ori-

ginated by Frobenius and Perron. We prove here only

what we need.

Theorem 1. Let

A > 0 (1)

be a square matrix. Then there is a y = y(A) in

0 < y < °° (2)

with the following properties:

(i) y is an eigenvalue of A and has an eigen-

vector b > 0 .

(ii) Every (real or complex) eigenvalue X of A

satisfies

|X| < y . (3)

(iii) For given p , a necessary and sufficient con-

dition that there exists a c > 0 with

A£ > p£ (4)

is that

P < y .

(iv) For given a > 0 , a necessary and sufficient

condition that there exist a d > 0 with

d >> GAd (5)

is that

ya < 1 .

(v) (I - aA)" 1 > 0 (6)

whenever

0 < ya < 1 .

(vi) y(A) is a nondecreasing function of each of

the elements of A .

(vii) y(A') = y(A) , where A1 is the transposed

of A .
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Proof. (iii) We define y to be the supremum of the

p for which there is a £ > 0 satisfying (4) . Clearly

(2) holds. Normalizing the c to lie on the simplex

S : x > 0 , Ex. = 1 , (7)

we deduce by compactness that there is an e e S with

Ae > ye . (8)

Then £ = e_ satisfies (4) for all p < y .

(vi) is now trivial.

(ii) Let u be an eigenvector to the eigenvalue

A , where u,A may be complex. Let v > 0 be the

vector consisting of the absolute values of the elements

of u . Clearly

Av > |A|v ; (9)

and (ii) follows from (iii).

We give two alternative proofs of (i).

(i) First proof. We must show that there is equality

in (8) for some e_ . Suppose, first, that for every

index j there is some e for which either

or

(Ae).. > ye^ ^

(Ae). = 0 . (1O9)

On summing these e_ for j = l,...,n we obtain an

e_ = e_ (say) which satisfies (10.) or (IO2) for each j .

But then

Ae* > (y+e)e* (11)

for some e > 0 , contrary to the definition of y .

Hence we may suppose without loss of generality that

(Ae^ = yex ^ 0 (12)

for every solution of (8) .

By a compactness argument [e.g. considering only

the e on (7)] there is a

6 > 0 (13)

such that every solution e_ of (8) satisfies

(14)

and there is an ef for which
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ej = 6Ze' . . (15)

Put

e" = Ae1 . (16)

Then

Ae" - ye" = A(Aef - ye1) > O , (17)

so e" satisfies (8) . We have

eV > ye1., (all j) (18)

by (8) and

e£ = yej . (19)

By (15) and (14) for e = e_" there must be equality in

(18) for all j . Hence b = e1 is an eigenvector

belonging to y , as required.

(i) Alternative proof. Suppose, first, that

A >> 0 , (20)

and that there is inequality in (8) . Put e* = Ae .

Then

Ae* - ye* = y(Ae - ye) > 0 (21)

and so, as in (11), we have a contradiction. Hence in

case (20) there is always equality in (8) and we may

take b = e .

Every A satisfying (1) is the limit of matrices

for which (20) holds. The existence of b when (20)

does not hold may now be deduced by compactness,

(vii) is immediate from (i) and (ii) .

There remain (iv) and (v). We give two alter-

native arguments. The first proves (v) first, and de-

duces (iv). The second starts with (iv).

( v) First proof. The infinite series

-1
I + aA + ... + (aA)k + .. . (22)

converges when ya < 1 by (ii). It sums to (I-oA)

The truth of (6) is now evident.

(iv) First proof. Suppose that ya < 1 and let

z, be any vector with JS >> 0 . Then

d = (I-aA)"1 z > 0 (23)

by (iv) and clearly satisfies (5).
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Suppose, now, that (5) holds. By (vii) and (i)

applied to the transposed of A there is a row vector

f_ > 0 such that f_A = \if_ . Then (5) implies that

fd > ay fd ; (24)

and so ay < 1 .

(iv) Alternative proof. Apply Lemma 8, Corollary,

of Appendix A to the matrix D = I-aA . The (iv)

follows immediately from (iii) for the transposed of A.

(v) Alternative proof. Suppose that ya < 1 .

We show first that any real vector £ with

2 > aA£ (25)

necessarily satisfies cj > 0 . For, if not, there is

a 8 > 0 such that

£* + e2 > 2 but not > > 2 (26)
for the d given by (iv) . Then (5), (25), (26) would

give

d + 62 >> aA(d + 63)

> 0 , (27)

in contradiction to (26).

The matrix (I-aA)"1 exists by (ii). The truth of

(v) now follows by applying the preceding argument with

2 as each of the columns of (I-aA) in turn.

We say that the matrix A = (a..) is reducible if

there is some non-empty set S of indices such that

ai:j = 0 (i € S , j / S) .

This is the same as saying that there is a permutation

of the indices such that A takes the shape

f All A12
A = 1 0 A22

for submatrices An'Ai2'A22 * If A is not reducible,

then it is irreducible. We have now the

Corollary. Suppose that A is irreducible. Then

(viii) The eigenvector b given by (i) is unique

(up to a multiplicative factor) and satisfies b >> 0 .
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(ix) Let £ > 0 be an eigenvector to eigenvalue

A . Then A = y and c is a multiple of b .

Proof. (viii). Suppose it is not true that b >> 0 .

Let S be the set of indices k for which b, = 0 .

Then Ab = yb implies that a.. = 0 for ie S, j / S,

contrary to the assumption that A is irreducible.

Now let a. > 0 be another eigenvector belonging

to y . Then we can find 0 > 0 such that a - 0b > 0

but not >>0 . Then a - 0b is an eigenvector to y ,

and there is a contradiction to what has just been

proved unless a. = 6b̂  .

(ix) By applying (viii) to the transposed of A ,

there is an f_ >> 0 with fA = yjf . Then fc ^ 0

and

Afc = fAc = yfi£ .

Hence A = y and (viii) applies to b = c .
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Appendix C Exercises

1. Find an A and an e^ for which there is inequality

in (8). [It is enough to consider 2x2 matrices.]

2. If A is irreducible, show that y is an eigen-

value of multiplicity 1.

[Hint. If not, there is a c linearly independent
2

of b annihilated by (A-yl) , so Ac_-y£ = 9b for

some 8 . Use the technique of (ix) to show that

0 = 0.]

3. (a) If A >> 0 , show that there is strict in-

equality in (3) for X ^ y .

(b) Show that the result of (a) does not extend to

all irreducible A .

[Hints.(a) A-6l>0 for some 6 > 0 . Apply (3)

with A-6I for I . (b) It is enough to con-

sider 2x2 matrices.]

4. Show that the adjoint

Adj(I-GA) > 0 ,

provided that 0 < yo < 1 : and that this con-

tinues to hold for ya = 1 provided that A is

irreducible.

5. Let A be irreducible. For given index i let

T(i) be the set of t > 0 for which there is a

set of indexes

with

a(jr/rr+1) ^ 0 (0 < r < t) ,

where we write a.. = a(i,j) for typographical

convenience. Show (i) that the greatest common

divisor q of the t c T(i) is independent of i

and (ii) that T(i) contains all sufficiently

large multiples of q .

(a) Suppose that q = 1 . Show that AN >> 0 for

all sufficiently large N . Deduce that there is
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strict inequality in (3) for X ^ y .

(b) Suppose that q > 1 . Show that n = qs for

some integer s and that the indices l,...,n

can be partitioned into q sets S (1),...,S(q) such

that a.. = 0 unless i e S(u), j e S(u+1) for

some u / where u is taken modulo q . Show,

further, that for all sufficiently large N the
Ncr

elements b.. of A ^ are non-zero precisely when

i,j are in the same S(u) . Deduce that the

eigenvalues X of A with |X| = y are precisely

the roots of \" = y^ .

Let A be irreducible, and suppose that not all

the diagonal elements of A are 0 . Show that

there is inequality in (3) for X ^ y .

[Hint. Previous exercise.]
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INDEX

activity 75
aggregate demand 99
allocation 15
almost decisive 67
Arrow-Debreu economy 32
Arrow1s impossibility

theorem 66

balanced budget
multiplier 103

basic activity 75
blocking coalition 16
bonds 104
bubble gum 38
budget constraint 3
bundle of goods,

commodities 1

candy-floss 90
capital intensity 112
capital intensity

(uniform) 93
capital stock 111
catenary property 96
cardinal utility 3
classical pole 110
closed economy 99
closed Leontieff model 76
coalition 16
commodities 1
comparative statics 99
compensated change in

revenue 8
competitive allocation 17
competitive industry 39
complements 6, 49
cone 123
congestion 60
conical neighbourhood 90
constant prices 104
constant returns to

scale 48
consumer's surplus 37
consumption 99
contract curve 21, 46
convex cover 121
core 16, 44
Cournot point 44
cost 3
cost-pull inflation 108

decisive 68
decreasing returns to

scale 48
deflationary gap 103
demand 35, 99
demand-pull inflation 108
depression pole 110
dictator 67
duopoly 44

economic expansion rate 86
economic rent 43
economies of scale (= in-

creasing returns to
scale 48

Edgeworth box 19
Edgeworth paradox 51
efficient efficiently 47,79
elastic, elasticity 54
employment 102, 106
endowment 15
Engel curve 30
excess demand function 22
expansion rate 85
exploitation 83
extended contract curve 30
externalities 63

factor costs 47
factor of production 75
feasible allocation 32
final allocation 15
fiscal changes 110
fixed cost 39
free carry-over 96
free disposal 89
free entry (to industry) 46
free good 3
free rider problem 59
frontier 212
full employment 102,106,107
full employment GNP 102

Gale economy 84
gap (deflationary, infla-

tionary) 103
generalized substitution

theorem 11
Giffen good 8
going price 39
golden rule 113
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goods 1
gross national product

(GNP) 101

Hicks diagram 108
household 15

income 99
increasing return to

scale 62
index numbers 11, 14
indifference curve 19
indifference hyper-

surface 2, 5
inelastic 54
inferior good 8
inflation 108
inflationary gap 103
initial endowment 15
input 35
intensity: intensity

vector 75
interest 83, 104
inventory cycle 117
investment 99
invisible hand 40
irreducible (Gale

economy) 87
IS-curve 110

joint production 81

Keynes1 multiplier 100

labour 77
Laspeyre index 11, 14
Leontieff model 75
level of employment 106
level of prices 103
Le Chatelier principle 52
Lindahl prices 72
liquid 105
liquidity trap 104
LM-curve 110
lunch 85

marginal propensity
to consume 30, 100
to save 100

marginal productivity 48
Marshall-Lerner

condition 55
Marx model 83
monetary changes 110
monetary illusion 108
money 35, 105

monopoly 42
multiplier (balanced

budget) 103
(Keynes1) 100

net product 32, 76
no free lunch 85
non-substitution theorem 80
normalized price vector 2 2

oligopoly 46
open Leontieff model 77
order of preference 1
ordinal utility 3
organic composition of

capital (uniform) 93
orthant 123
output 35, 99
overheating 102

Paasche index 11, 14
Pareto efficient 16
Pareto optimal 15
possibility set 47
preference 1
prices (level of) 103
price vector 3
primary good 75
process 75
producers1 surplus 35
production set 32
profit 83
public good 59

quantity-complements 14
quantity-substitute 14
quantity theory of money 107

rate of exploitation 83
rate of growth

(warranted) 112
rate of interest 83, 104
rate of profit 83
rate of surplus value 83
rationing 12, 13
real terms 104
real wage 106
reciprocity theorem 6
reducible (Gale economy) 87
replicated economy 18
reswitching 94
returns to scale 48
revealed preference 12
revenue term 8
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saving 100
Slutsky equation 8
social utility function 58
Sraffa model 82
Sraffa's standard net

product 93
stay-out pricing 47
subsistence bundle, wage 83
substitutes 6, 49
substitution term 8
substitution theorem 5

(generalized) 11
supply 35
surplus value 83

tac-hyperplane 121
technological expansion

rate 85
terms of trade 31
thrift (paradox of) 101, 105
transaction costs 65
transformation of values into

prices of production 84
turnpike theorems 88, 89
type (of household in

replicated economy) 18

unemployment 108
unpaid wage 83
utility function 2

value 81
value added tax 53
variable cost 39
veil 98
von Neumann model 87
von Neumann prices 89

wage 77, 106
Walras allocation 17
warranted rate of growth 112
welfare economics 58

"year" 75
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