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Preface 

Operations research, which is concerned with the efficient allocation of scarce 
resources, is both an art and a science. The art lies in the ability to reflect the 
concepts efficient and scarce in a well-defined mathematical model of a given 
situation; the science consists in the derivation of computational methods for 
solving such models. This book is meant to introduce readers to both aspects of 
the field. 

Each chapter is divided into three sections. The first deals mainly with 
methodology; the exception is Chapter 1, which is-concerned exclusively with the 
modeling aspects of mathematical programming. The second section consists of 
completely worked out problems. Besides clarifying the techniques presented in 
the first section, these problems may expand them and may also provide proto­
type situations for understanding the art of modeling. Finally, there is a section 
of problems with answers through which readers can test their mastery of the 
material. 

The book itself is divided into two parts: mathematical programming and 
probabilistic methods. The first part, Chapters 1 through 15, is comprised solely 
of deterministic methods in linear, nonlinear, integer, and dynamic programming, 
along with a chapter on network analysis. A background in matrix algebra is 
sufficient for most of this material, although some differential calculus is required 
for the nonlinear search techniques. The second part, Chapters 16 through 24, 
includes material on stochastic dynamic programming, graph theory, decision 
theory, Markov chains, and queueing. As its title suggests, this part of the book 
has a first course in probability as a prerequisite. 

Since the optimal allocation of money, manpower, energy, or a host of other 
scarce factors, is of importance to decision makers in many traditional disciplines, 
the material in this book will be useful to individuals from a variety of back­
grounds. Therefore, this outline has been designed both as a textbook for students 
wanting an introduction to operations research and as a reference manual from 
which practitioners can obtain specific procedures. 

I should like to thank those people who helped make the book a reality. The 
valuable suggestions of Natalie Ruber and Donald Bein with respect to Chapters 
13 and 19, respectively, are warmly acknowledged, as are the contributions of Fay 
Klein, who assisted in the typing of the manuscript. David Beckwith of the 
Schaum's staff, besides editing the manuscript, contributed in several places to the 
procedures and the problems. 

RICHARD BRONSON 
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PART I: Mathematical Programming 

Chapter 1 
Mathematical Programming 

OPTIMIZATION PROBLEMS 

In an optimization problem one seeks to maximize or minimize a specific quantity, called the 
objective, which depends on a finite number of input variables. These variables may be independent 
of one another, or they may be related through one or more constraints. 

Example 1.1 The problem 

minimize: z=xi+x~ 

subject to: XI- X2 = 3 
X22:2 

is an optimization problem for the objective z. The input variables are XI and x2, which are constrained in two 
ways: XI must exceed X2 by 3, and also X2 must be greater than or equal to 2. It is desired to find values for 
the input variables which minimize the sum of their squares, subject to the limitations imposed by the 
constraints. 

A mathematical program is an optimization problem in which the objective and constraints are 
given as mathematical functions and functional relationships (as they are in Example 1.1). Mathemati­
cal programs treated in this book have the form 

optimize: Z = f(x~, X2, ... , Xn) 

subject to: g.(x., X2, ... , Xn) bl 

g2(x~, X2, ... , Xn) ::5; b2 
............... (1.1) 

2:: 

gm (x., X2, ... , Xn) bm 

Each of them constraint relationships in (1.1) involves one of the three signs ::5;, =, 2::. Unconstrained 
mathematical programs are covered by the formalism (1.1) if each function gi is chosen as zero and each 
constant b, is chosen as zero. 

LINEAR PROGRAMS 

A mathematical program (1.1) is linear if f(x., X2, ... , Xn) and each gi(x., x2, ... , Xn) 
(i = 1, 2, ... , m) are linear in each of their arguments-that is, if 

(1.2) 

and 

g;(x~, x2, ••. , Xn) = anxi + ai2x2 + · · · + ainXn (1.3) 

where ci and a,i (i = 1, 2, ... , m; j = 1, 2, ... , n) are known constants. 
Any other mathematical program is nonlinear. Thus, Example 1.1 describes a nonlinear 

program, in view of the form of z. 

1 
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INTEGER PROGRAMS 

An integer program is a linear program with the additional restriction that the input variables be 
integers. It is not necessary that the coefficients in (1.2) and (1.3), and the constants in (1.1), also be 
integers, but this will very often be the case. 

QUADRATIC PROGRAMS 

A quadratic program is a mathematical program in which each constraint is linear-that is, each 
constraint function has the form (1.3)-but the objective is of the form 

n n n 

f(Xt. X2, ... , Xn) = ~ ~ C;jX;Xj + ~ d;X; (1.4) 
i=l i=l i=l 

where c;i and d; are known constants. 
The program given in Ex;ample 1.1 is quadratic. Both constraints are linear, and the objective 

has the form (1.4), with n = 2 (two variables), cu = 1, c12 = c21 = 0, c22 = 1, and dt = d2 = 0. 

PROBLEM FORMULATION 

Optimization problems most often are stated verbally. The solution procedure is to model the 
problem with a mathematical program and then solve the program by the techniques described in 
Chapters 2 through 15. The following approach is recommended for transforming a word problem 
into a mathematical program: 

STEP 1 Determine the quantity to be optimized and express it as a mathematical function. Doing 
so serves to define the input variables. 

STEP 2 Identify all stipulated requirements, restrictions, and limitations, and express them 
mathematically. These requirements constitute the constraints. 

STEP 3 Express any hidden conditions. Such conditions are not stipulated explicitly in the 
problem but are apparent from the physical situation being modeled. Generally they 
involve nonnegativity or integer requirements on the input variables. 

SOLUTION CONVENTION 

In any mathematical program, we seek a solution. If a number of equally optimal solutions 
exist, then any one will do. There is no preference between equally optimal solutions if there is no 
preference stipulated in the constraints. 

Solved Problems 

1.1 The Village Butcher Shop traditionally makes its meat loaf from a combination of lean ground 
beef and ground pork. The ground beef contains 80 percent meat and 20 percent fat, and 
costs the shop 80~ per pound; the ground pork contains 68 percent meat and 32 percent fat, 
and costs 6~ per pound. How much of each kind of meat should the shop use in each pound 
of meat loaf if it wants to minimize its cost and to keep the fat content of the meat loaf to no 
more than 25 percent? 

The objective is to minimize the cost (in cents), z, of a pound of meat loaf, where 

z = 80 times the poundage of ground beef used plus 60 times the poundage of ground pork used 

Defining 
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x, • poundage of ground beef used in each pound of meat loaf 
x2 s poundage of ground pork used in each pound of meat loaf 

we express the objective as 

minimize: z = BOx, + 60x2 

3 

(1) 

Each pound of meat loaf will contain 0.20x, pound of fat contributed from the beef and 0.32x2 
pound of fat contributed from the pork. The total fat content of a pound of meat loaf must be no greater 
than 0.25 lb. Therefore, 

0.20x, + 0.32x2 ::s: 0.25 

The poundages of beef and pork used in each pound of meat loaf must sum to 1; hence, 

x, +x2= 1 

(2) 

(3) 

Finally, the butcher shop may not use negative quantities of either meat, so that two hidden 
constraints are x1 2:: 0 and x2 2:: 0. Combining these conditions with (1 ), (2), and (3), we obtain 

minimize: z = BOx,+ 60x2 

subject to: 0.20x, + 0.32x2 ::s: 0.25 (4) 

X!+ X2= 1 

with: all variables nonnegative 

System (4) is a linear program. As there are only two variables, a graphical solution may be given. 

1.2 Solve the linear program (4) of Problem 1.1 graphically. 

See Fig. 1-1. The feasible region-the set of points (x~, x2) satisfying all the constraints, including 
the nonnegativity conditions--is the heavy line segment in the figure. To determine z *,the minimal value 
of z, we arbitrarily choose values of z and plot the graphs of the associated objectives. By choosing z = 
70 and then z = 75, we obtain the objectives 

and 

respectively. Their graphs are the dashed lines in Fig. 1-1. It is seen that z * will be assumed at the upper 
endpoint of the feasible segment, which is the intersection of the two lines 

and x, +x2= 1 

Simultaneous solution of these equations gives xT = 7/12, x! = 5/12; hence, 

z * = 80(7 /12) + 60(5/12) = 71.67 ~ 

Fig. 1-1 
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1.3 A furniture maker has 6 units of wood and 28 h of free time, in which he will make decorative 
screens. Two models have sold well in the past, so he will restrict himself to those two. He 
estimates that model I requires 2 units of wood and 7 h of time, while model II requires 1 unit 
of wood and 8 h of time. The prices of the models are $120 and $80, respectively. How 
many screens of each model should the furniture maker assemble if he wishes to maximize his 
sales revenue? 

The objective is to maximize revenue (in dollars), which we denote as z: 

z = 120 times the number of model I screens produced plus 80 
times the number of model II screens produced 

Letting 

x, = number of model I screens to be produced 
X2 = number of model II screens to be produced 

we express the objective as 

maximize: z = 120xi + 80x2 (1) 

The furniture maker is subject to a wood constraint. As each model I requires 2 units of wood, 2x, 
units must be allocated to them; likewise. 1x2 units of wood must be allocated to the model II 
screens. Hence the wood constraint is 

(2) 

The furniture maker also has a time constraint. The model I screens will consume 7xi hours and 
the model II screens 8x2 hours; and so 

(3) 

It is obvious that negative quantities of either screen cannot be produced, so two hidden constraints 
are Xi 2= 0 and X2 2= 0. Furthermore, since there is no revenue derived from partially completed 
screens, another hidden condition is that Xi and x2 be integers. Combining these hidden conditions with 
(1), (2), and (3), we obtain the mathematical program 

maximize: z = 120xi + 80x2 

subject to: 2xi + X2 s 6 

1xi + 8x2 s 28 

with: all variables nonnegative and integral 

(4) 

System (4) is an integer program. As there are only two variables, a graphical solution may be 
given. 

1.4 Give a graphical solution of the integer program (4) of Problem 1.3. 

See Fig. 1-2. The feasible region is the set of integer points (marked by crosses) within the shaded 
area. The dashed lines are the graphs of the objective function when z is arbitrarily given the values 
240, 330, and 380. It is seen that the z-line through the point (3, 0) will furnish the desired maximum; 
thus, the furniture maker should assemble three model I screens and no mode! II screens, for a maximum 
revenue of 

z * = 120(3) + 80(0) = $360 

Observe that this optimal answer is not achieved by first solving the associated linear program (the 
same problem without the integer constraints) and then moving to the closest feasible integer 
point. In fact, the feasible region for the associated linear program is the shaded area of Fig. 1-2; so the 
optimal solution occurs at the circled corner point. But at the closest feasible integer point, (2, 1), the 
objective function has the value z = 120(2) + 80(1) = $320 or $40 less than the true optimum. 

An alternate solution procedure for Problem 1.3 is given in Problem 7.8. 
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Fig. 1-2 

l.S Universal Mines Inc. operates three mines in West Virginia. The ore from each mine is 
separated into two grades before it is shipped; the daily production capacities of the mines, as 
well as their daily operating costs, are as follows: 

High-Grade Ore, Low-Grade Ore, Operating Cost, 
tons/day tons/day $1000/day 

Mine I 4 4 20 
Mine II 6 4 22 
Minelli 1 6 18 

Universal has committed itself to deliver 54 tons of high-grade ore and 65 tons of low-grade 
ore by the end of the week. It also has labor contracts that guarantee employees in each 
mine a full day's pay for each day or fraction of a day the mine is open. Determine the 
number of days each mine should be operated during the upcoming week if Universal Mines is 
to fulfill its commitment at minimum total cost. 

Let Xt, x2, and X3, respectively, denote the numbers of days that mines I, II, and III will be operated 
during the upcoming week. Then the objective (measured in units of $1000) is 

minimize: z = 20x1 + 22x2 + l8x3 

The high-grade ore requirement is 

and the low-grade ore requirement is 

(1) 

(2) 

(3) 

As no mine may operate a negative number of days, three hidden constraints are Xt 2= 0, x2 2= 0, and 
X3 2= 0. Moreover, as no mine may operate more than 7 days in a week, three other hidden con­
straints are Xt s 7, X2 s 7, and X3 s 7. Finally, in view of the labor contracts, Universal Mines has 
nothing to gain in operating a mine for part of a day; consequently, Xt, x2, and X3 are required to be 
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integral. Combining the hidden conditions with (1), (2), and (3), we obtain the mathematical program 

minimize: z = 20x, + 22x2 + l8x3 

subject to: 4x, + 6x2 + X3 2:: 54 

4x, + 4x2 + 6x3 2:: 65 

with: all variables nonnegative and integral 

System (4) is an integer program; its solution is determined in Problem 7.4. 

(4) 

1.6 A manufacturer is beginning the last week of production of four different models of wooden 
television consoles, labeled I, II, III, and IV, each of which must be assembled and then 
decorated. The models require 4, 5, 3, and 5 h, respectively, for assembling and 2, 1.5, 3, and 
3 h, respectively, for decorating. The profits on the models are $7, $7, $6, and $9, respec­
tively. The manufacturer has 30 000 h available for assembling these products (750 assem­
blers working 40 h/wk) and 20 000 h a\'ailable for decorating (500 decorators working 
40 h/wk). How many of each model should the manufacturer produce during this last week 
to maximize profit? Assume that all units made can be sold. 

The objective is to maximize profit (in dollars), which we denote as z. Setting 

Xt =number of model I consoles to be produced in the week 
X2 =number of model II consoles to be produced in the week 
X3 =number of model III consoles to be produced in the week 
X4 =number of model IV consoles to be produced in the week 

we can formulate the objective as 

maximize: z = 7x, + 1x2 + 6x3 + 9x4 (1) 

There are constraints on the total time available for assembling and the total time available for 
decorating. These are, respectively, modeled by 

(2) 

(3) 

As negative quantities may not be produced, four hidden constraints are Xi 2:: 0 (i = 1, 2, 3, 4). Ad­
ditionally, since this is the last week of production, partially completed models at the week's end would 
remain unfinished and so would generate no profit. To avoid such possibilities, we require an integral 
value for each variable. Combining the hidden conditions with (1), (2), and (3), we obtain the 
mathematical program 

subject to: 4x, + Sx2 + 3x3 + 5x4 :5 30 000 

2x,+ 1.5x2+3x3+3x4:520000 

with: all variables nonnegative and integral 

System (4) is an integer program; its solution is determined in Problem 6.4. 

(4) 

1.7 The Aztec Refining Company produces two types of unleaded gasoline, regular and premium, 
which it sells to its chain of service stations for $12 and $14 per barrel, respectively. Both 
types are blended from Aztec's inventory of refined domestic oil and refined foreign oil, and 
must meet the following specifications: 



CHAP. 1] MATHEMATICAL PROGRAMMING 7 

Maximum Minimum Maximum Minimum 
Vapor Octane Demand, Deliveries, 

Pressure Rating bbl/wk bbl/wk 

I_ Regular 23 88 100000 50000 
Premium 23 93 20000 5000 

The characteristics of the refined oils in inventory are as follows: 

Vapor Octane Inventory, Cost, 
Pressure Rating bbl $/bbl 

I Domestic 25 87 40000 8 
Foreign 15 98 60000 15 

What quantities of the two oils should Aztec blend into the two gasolines in order to maximize 
weekly profit? 

Set 

Xi ii!!E barrels of domestic blended into regular 
X2 • barrels of foreign blended into regular 
XJ"" barrels of domestic blended into premium 
X4"" barrels of foreign blended into premium 

An amount Xi+ X2 of regular will be produced and generate a revenue of 12(Xi + x2); an amount X3 + X4 

of premium will be produced and generate a revenue of 14(XJ + X4). An amount Xi+ X3 of domestic will 
be used, at a cost of B(xi + X3); an amount x2+ X4 of foreign will be used, at a cost of lS(x2+ x4). The 
total profit, z, is revenue minus cost: 

maximize: z = 12(Xi + x2) + 14(x3 + X4)- B(xi + X3)- lS(x2 + X4) 

= 4xi- 3x2+ 6x3- X4 (1) 

There are limitations imposed on the production by demand, availability of supplies, and specifi­
cations on the blends. From the demands, 

From the availability, 

Xi+ x2:s 100000 (maximum demand for regular) 

X3 + X4 ::s 20 000 (maximum demand for premium) 

Xi+ X2 2:: 50 000 (minimum regular required) 

XJ + X4 2:: 5 000 (minimum premium required) 

Xi+ X3::S40()()() (domestic) 

X2 + X4 :s 60 000 (foreign) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

The constituents of a blend contribute to the overall octane rating according to their percentages by 
weight; likewise for the vapor pressure. Thus, the octane rating of regular is 

and the requirement that this be at least 88 leads to 

xi-10x2:sO 

Similarly, we obtain: 

6x3- 5x4:s0 (premium octane constraint) 

(8) 

(9) 
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Zx1- 8x2 s 0 (regular vapor-pressure constraint) 

2x3- 8x4 s 0 (premium vapor-pressure constraint) 

[PART I 

(10) 

(11} 

Combining (1) through (11) with the four (hidden) nonnegativity constraints on the four variables, 
we obtain the mathematical program 

maximize: z == 4xt - Jx2 + 6x3- X4 

subject to: X:t+ X2 s 100000 

X3+ X4S 20000 

Xi + X3 s 40000 

X2 + X4S 60000 

Xt-10X2 s 0 
6x3- 5x4s 0 (12) 

2xt- 8x2 s 0 

2x3-8X4S 0 

Xt+ X2 ;;::: 50000 

X3+ X4;;:, 5000 

with: all variables nonnegative 

System (12) is a linear program; its solution is determined in Problem 4.7. 

1.8 A hiker plans to go on a camping trip. There are five items the hiker wishes to take with her, 
but together they exceed the 60-lb weight limit she feels she can carry. To assist herself in 
the selection process, she has assigned a value to each item in ascending order of importance: 

Item I 2 3 4 5 

Weight, lb 52 23 35 15 7 

Value 100 60 70 15 15 

Which items should she take to maximiu: the total value without exceeding the weight 
restriction? 

Letting X; (i = 1, 2, 3, 4, 5) designate the amount of item i to be taken, we can formulate the 
objective as 

maximize: z = 100x 1 + 60x2 + 70x3 + 15x4 + 15xs 

The weight limitation is 

(1) 

(2} 

Since an item either will or will not be taken, each variable must be either 1 or 0. Such conditions are 
enforced if we require each variable to be nonnegative, no greater than 1, and integral. Combining 
these constraints with (1) and (2}, we obtain the mathematical program 

maximize: z = 100x 1 + 60x2 + 70x3 + 15x4 + 15xs 

subject to: 52xt + 23x2 + 35x3 + 15x4 + 7xs s 60 

Xt s 1 

X2 s 1 (3) 

X3 s 1 

X4 s 1 

XsS 1 

with: all variables nonnegative and integral 
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System (3) is an integer program; its solution is determined in Problem 6.7 and again in Problem 
14.16. 

1.9 A 24-hour supermarket has the following minimal requirements for cashiers: 

Period 1 2 3 4 5 6 

Time of day 
(24-h clock) 3-7 7-11 11-15 15-19 19-23 23-3 

Minimum No. 7 20 14 20 10 5 

Period 1 follows immediately after period 6. A cashier works eight consecutive hours, 
starting at the beginning of one of the six periods. Determine a daily employee worksheet 
which satisfies the requirements with the least number of personnel. 

Setting X; (i = 1, 2, ... , 6) equal to the number of cashiers beginning work at the start of period i, 
we can model this problem by the mathematical program 

minimize: Z =X!+ X2+ X3+ X4+ Xs+ X6 

subject to: x, 
X1+X2 

X2+X3 

X3+ X4 ~20 

X4+ Xs ~ 10 

Xs+ X6~ 5 

with: all variables nonnegative and integral 

System (1) is an integer program; its solution is determined in Problem 6.3. 

(1) 

1.10 A cheese shop has 20 lb of a seasonal fruit mix and 60 lb of an expensive cheese with which it 
will make two cheese spreads, delux and regular, that are popular during Christmas 
week. Each pound of the delux spread consists of 0.2lb of the fruit mix and 0.8lb of the 
expensive cheese, while each pound of the regular spread consists of 0.2 lb of the fruit mix, 
0.3 lb of the expensive cheese, and 0.5 lb of a filler cheese which is cheap and in plentiful 
supply. From past pricing policies, the shop has found that the demand for each spread 
depends on its price as follows: 

D 1 = 190- 2SP1 and D 2 = 250- 50Pz 

where D denotes demand (in pounds), P denotes price (in dollars per pound), and the 
subscripts 1 and 2 refer to the delux and regular spreads, respectively. How many pounds of 
each spread should the cheese shop prepare, and what prices should it establish, if it wishes to 
maximize income and be left with no inventory of either spread at the end of Christmas week? 

Let x, pounds of delux spread and X2 pounds of regular spread be made. If all product can be sold, 
the objective is to 

maximize: z = P,x, + P2X2 (1) 

Now, all product will indeed be sold (and none will be left over in inventory) if production does not exceed 
demand, i.e., if X1 s D, and X2 s D2. This gives the constraints 

X1 + 25P, s 190 

From the availability of fruit mix, 

and (2} 
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0.2x, + 0.2xz s 20 

and from the availability of expensive cheese, 

0.8x, + 0.3xz s 60 

(PART I 

(3) 

(4) 

There is no constraint on the filler cheese, since the shop has as much as it needs. Finally, neither 
production nor price can be negative; so four hidden constraints are x,.:2= 0, xz .:2::0, P,.:2= 0, and Pz .:2::0. 
Combining these conditions with (1) through (4), we obtain the mathematical program 

maximize: z == P,x, + P2Xz 

subject to: 0.2x, + 0.2xz 

0.8x, + 0.3xz 

X! +25P, 

with: all variables nonnegative 

s20 

s60 

st90 (5) 

System (5) is a quadratic program in the variables x,, xz, P,, and Pz. It can be simplified if we note 
that for any fixed positive x, and Xz the objective function increases as either P, or P2 increases. Thus, 
for a maximum, P, and Pz must be such that the constraints (2) become equations, whereby p, and P2 

may be eliminated from the objective function. We then have a quadratic program in x, and xz, 

maximize: z == (7.6- 0.04xt)Xt + (5- 0.02x2)xz 

subject to: 0.2x, + 0.2xz s 20 

which is easily solved graphically. 

0.8Xt + 0.3X2 S 60 

with: x, and xz nonnegative 
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1.11 Give a graphical solution of the quadratic program (6) of Problem 1.10. 

For graphing purposes, it is convenient to complete the square in the objective function, yielding 

maximize: z = 673.5- 0.04(x,- 95i- 0.02(x2- 125i 

which is equivalent to 

minimize: z' = 0.04(x,- 95}2+ 0.02(x2-125}2 (1) 

Since the constraints are linear, the feasible region is bounded by straight lines; it appears shaded in Fig. 
1.3. For any particular value of z', (1) defines an ellipse centered at (95, 125}, and two such ellipses are 
shown in Fig. 1-3 as dashed curves. The minimum value of z' will correspond to that ellipse defined by (1) 
which is tangent to the line 

0.2Xt + 0.2X2 = 20 

To find the point of tangency, we equate the slopes of the line and the ellipse, 

dx2= _ 1 
dxt 

and 
dx2 2(Xt - 95) 
dxt =- x2-125 

obtained by implicit differentiation of (2) and (1), respectively; this gives 

x2= 2x,-65 

Solving (2} and (3) simultaneously gives the optimal solution to Problem 1.10: 

x t = 55 lb of de lux spread x ~ = 45 lb of regular spread 

(2} 

(3) 

1.12 A plastics manufacturer has 1200 boxes of transparent wrap in stock at one factory and 
another 1000 boxes at its second factory. The manufacturer has orders for this product from 
three different retailers, in quantities of 1000, 700, and 500 boxes, respectively. The unit 
shipping costs (in cents per box) from the factories to the retailers are as follows: 

Retailer 1 Retailer 2 Retailer 3 

Factory 1 14 13 11 
Factory 2 13 13 12 

Determine a minimum-cost shipping schedule for satisfying all demands from current in­
ventory. 

Writing Xij (i = 1, 2; j = 1, 2, 3) for the number of boxes to be shipped from factory i to retailer j, 
we have as the objective (in cents): 

minimize: z = 14xu + l3x12 + 11xl3 + Bx21 + Bx22 + 12x23 

Since the amounts shipped from the factories cannot exceed supplies, 

xu+ X12 + X13 s1200 (shipments from factory 1) 

X21 + x22 + X23 s 1000 (shipments from factory 2) 

Additionally, the total amounts sent to the retailers must meet their demands; hence 

xu+ X21 :2: 1000 (shipments to retailer 1) 

X12 + x22 :2: 700 (shipments to retailer 2) 

X13 + X23 :2: 500 (shipments to retailer 3} 

Since the total supply, 1200 + 1000, equals the total demand, 1000 + 700 + 500, each inequality constraint 
can be tightened to an equality. Doing so, and including the hidden conditions that no shipment be 
negative and no box be split for shipment, we obtain the mathematical program 
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minimize: z = 14xu + 1Jx12 + llx13 + 1Jx21 + 13x22 + 12x23 

subject to: xu+ X12 + X13 = 1200 

X21 + X22 + X23 = 1000 

Xu = 1000 (1) 

X12 + X22 700 

X!3 +x23= 500 

with: all variables nonnegative and integral 

System (1) is an integer program; its solution is determined in Problem 7.3 and again in Problem 8.6. 

1.13 A 400-meter medley relay involves four different swimmers, who successively swim 100 meters 
of the backstroke, breaststroke, butterfly, and freestyle. A coach has six very fast swimmers 
whose expected times (in seconds) in the individual events are given in Table 1-1. 

Table 1-1 

Event 1 Event 2 Event 3 Event 4 
(backstroke) (breaststroke) (butterfly) (freestyle) 

Swimmer 1 65 73 63 57 
Swimmer2 67 70 65 58 
Swimmer 3 68 72 69 55 
Swimmer4 67 75 70 59 
Swimmer 5 71 69 75 57 
Swimmer6 69 71 66 59 

How should the coach assign swimmers to the relay so as to minimize the sum of their times? 

The objective is to minimize total time, which we denote as z. Using double-subscripted variables 
X;j (i = 1, 2, ... , 6; j = 1, 2, 3, 4) to designate the number of times swimmer i will be assigned to event j, 
we can formulate the objective as 

minimize: z = 65xu + 73x,2 + 63xl3 + 57x,4 + 61x21 + · · · + 66X63 + 59x64 

Since no swimmer can be assigned to more than one event, 

xu +xu+x13+ X14o$1 
X21 + X22 + X23 + X24 o$ 1 

X6! + X6:! + X63 + X64 o$ 1 

Since each event must have one swimmer assigned to it, we also have 

Xu+ X21 + X3J + X41 + X51 + X6! = 1 

X14 + X24 + X34 + X44 + X54 + X64 = 1 

These 10 constraints, combined with the objective and the hidden conditions that each variable be 
nonnegative and integral, comprise an integer program. Its solution is determined in Problem 9.4. 

1.14 A major oil company wants to build a refinery that will be supplied from three port cities. Port B 
is located 300 km east and 400 km north of Port A, while Port Cis 400 km east and 100 km south of 
Port B. Determine the location of the refinery so that the total amount of pipe required to 
connect the refinery to the ports is minimized. 

The objective is tantamount to minimizing the sum of the distances between the refinery and the 
three ports. As an aid to calculating this sum .. we establish a coordinate system, Fig. 1-4, with Port A as 
the origin. In this system, Port B has coordinates (300, 400) and Port C has coordinates (700, 300}. 
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With (x,, x2) designating the unknown coordinates of the refinery, the objective is 

13 

minimize: z = V xt + x~ + V (x,- 3001 + (x2- 400)2 + V (x,- 700)2 + (x2- 300)2 (1) 

There are no constraints on the coordinates of the refinery nor any hidden conditions; for example, 
a negative value of X1 signifies only that the refinery should be placed west of Port A. Equation (1) is a 
nonlinear, unconstrained, mathematical program; its solution is determined in Problem 11.11. See also 
Problem 1.26. 

1.15 An individual has $4000 to invest and three opportunities available to him. Each opportunity 
requires deposits in $1000 amounts; the investor may allocate all the money to just one 
opportunity or split the money between them. The expected returns are tabulated as follows. 

Dollars Invested 

0 1000 2000 3000 4000 

Return from Opportunity 1 0 2000 5000 6000 7000 
Return from Opportunity 2 0 1000 3000 6000 7000 
Return from Opportunity 3 0 1000 4000 5000 8000 

How much money should be invested in each opportunity to obtain the greatest total return? 

The objective is to maximize total return, denoted by z, which is the sum of the returns from each 
opportunity. All investments are restricted to be integral multiples of the unit $1000. Letting 
[i(x) (i = 1, 2, 3) denote the return (in thousand-dollar units) from opportunity i when x units of money are 
invested in it, we can rewrite the returns table as Table 1-2. 

Table 1-2 

~ 0 I 2 3 4 

/J(x) 0 2 5 6 7 
h(x) 0 I 3 6 7 
/J(x) 0 I 4 5 8 

Defining x1 (i = 1, 2, 3) as the number of units of money invested in opportunity i, we can formu­
late the objective as 
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maximize: z = /J(Xi) + h(xz) + [3(x3) 

Since the individual has only 4 units of money to invest, 

[PART I 

(1) 

(2) 

Augmenting (1) and (2) with the hidden conditions that X1, x2, and X3 be nonnegative and integral, we 
obtain the mathematical program 

subject to: X1 + X2 + X3 :54 (3) 

with: all variables nonnegative and integral 

Plotting f;(x) against x for each function gives a graph that is not a straight line. Therefore, system 
(3) is a nonlinear program; its solution is determined in Problem 14.1. 

Supplementary Problems 

Formulate but do not solve mathematical programs that model Problems 1.16 through 1.25. 

1.16 Fay Klein had developed two types of handcrafted, adult games that she sells to department stores 
throughout the country. Although the demand for these games exceeds her capacity to produce them, 
Ms. Klein continues to work alone and to limit her workweek to 50 h. Game I takes 3.5 h to produce 
and brings a profit of $28, while game II requires 4 h to complete and brings a profit of $31. How many 
games of each type should Ms. Klein produce weekly if her objective is to maximize total profit? 

1.17 A pet store has determined that each hamster should receive at least 70 units of protein, 100 units of 
carbohydrates, and 20 units of fat daily. If the store carries the six types of feed shown in Table 1-3, 
what blend of feeds satisfies the requirements at minimum cost to the store? 

Table 1-3 

Protein, Carbohydrates, Fat, Cost, 
Feed units/oz units/oz units/oz f/OZ 

A 20 50 4 2 
B 30 30 9 3 
c 40 20 II 5 
D 40 25 10 6 
E 45 50 9 8 
F 30 20 IO 8 

1.18 A local manufacturing firm produces four different metal products, each of which must be machined, 
polished, and assembled. The specific time requirements (in hours) for each product are as follows. 

Machining, h Polishing, h Assembling, h 

Product I 3 I 2 
Product II 2 I I 
Product III 2 2 2 
Product IV 4 3 I 
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The firm has available to it on a weekly basis 480 h of machine time, 400 h of polishing time, and 400 h of 
assembly time. The unit profits on the products are $6, $4, $6, and $8, respectively. The firm has a 
contract with a distributor to provide 50 units of product I and 100 units of any combination of products 
n and lll each week. Through other customers, the firm can sell each week as many units of products I, 
II, and III as it can produce, but only a maximum of 25 units of product IV. How many units of each 
product should the firm manufacture each week to meet all contractual obligations and maximize its total 
profit? Assume that any unfinished pieces can be completed the following week. 

1.19 A caterer must prepare from five fruit drinks in stock 500 gal of a punch containing at least 20 percent 
orange juice, 10 percent grapefruit juice, and 5 percent cranberry juice. If inventory data are as shown 
below, how much of each fruit drink should the caterer use to obtain the required composition at minimum 
total cost? 

Orange Grapefruit Cranberry Supply, Cost, 
Juice, o/o Juice, o/o Juice, o/o gal $/gal 

Drink A 40 40 0 200 1.50 
DrinkB 5 10 20 400 0.75 
DrinkC 100 0 0 100 2.00 
DrinkD· 0 100 0 50 1.75 
DrinkE 0 0 0 800 0.25 

1.20 A town has budgeted $250 000 for the development of new rubbish disposal areas. Seven sites are 
available, whose projected capacities and development costs are given below. Which sites should the town 
develop? 

Site A B c D E F G 

Capacity, tons/wk 20 17 15 15 10 8 5 

Cost, $1000 145 92 70 70 84 14 47 

1.21 A semiconductor corporation produces a particular solid-state module that it supplies to four different 
television manufacturers. The module can be produced at each of the corporation's three plants, 
although the costs vary because of differing production efficiencies at the plants. Specifically, it costs 
$1.10 to produce a module at plant A, $0.95 at plant B, and $1.03 at plant C. Monthly production 
capacities of the plants are 7500, 10 000, and 8100 modules, respectively. Sales forecasts project 
monthly demand at 4200, 8300, 6300, and 2700 modules for television manufacturers I, II, III, and IV, 
respectively. If the cost (in dollars) for shipping a module from a factory to a manufacturer is as shown 
below, find a production schedule that will meet all needs at minimum total cost. 

I II III IV 

A 0.11 0.13 0.09 0.19 
B 0.12 0.16 0.10 0.14 

c 0.14 0.13 0.12 0.15 

1.22 The manager of a supermarket meat department finds she has 200 lb of round steak, 800 lb of chuck 
steak, and 150 lb of pork in stock on Saturday morning, which she will use to make hamburger meat, 
picnic patties, and meat loaf. The demand for each of these items always exceeds the supermarket's 
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supply. Hamburger meat must be at least 20 percent ground round and 50 percent ground chuck (by 
weight); picnic patties must be at least 20 percent ground pork and 50 percent ground chuck; and meat 
loaf must be at least 10 percent ground round, 30 percent ground pork, and 40 percent ground 
chuck. The remaiqder of each product is an int:xpensive nonmeat filler which the store has in unlimited 
supply. How many pounds of each product should be made if the manager desires to minimize the 
amount of meat that must be stored in the supermarket over Sunday? 

1.23 A legal firm has accepted five new cases, each of which can be handled adequately by any one of its five 
junior partners. Due to differences in experience and expertise, however, the junior partners would 
spend varying amounts of time on the cases. A senior partner has estimated the time requirements (in 
hours) as shown below: 

Case I Case 2 Case 3 Case 4 Case 5 

Lawyer I 145 122 130 95 115 
Lawyer 2 80 63 85 48 78 
Lawyer3 121 107 93 69 95 
Lawyer4 118 83 116 80 105 
Lawyer 5 97 75 120 80 Ill 

Determine an optimal assignment of cases to law)'ers such that each junior partner receives a different case 
and the total hours expended by the firm is minimized. 

1.24 Recreational Motors manufactures golf carts and s.nowmobiles at its three plants. Plant A produces 40 golf 
carts and 35 snowmobiles daily; plant B produc:es 65 golf carts daily, but no snowmobiles; plant C produces 
53 snowmobiles daily, but no golf carts. The costs of operating plants A, B, and Care respectively $210 000, 
$190 000, and $182 000 per day. How many days (including Sundays and holidays) should each plant 
operate during September to fulfill a production schedule of 1500 golf carts and 1100 snowmobiles at 
minimum cost? Assume that labor contracts require that once a plant is opened, workers must be paid for 
the entire day. 

1.25 The Futura Company produces two types of fam1 fertilizers, Futura Regular and Futura's Best. Futura 
Regular is composed of 25% active ingredients and 75% inert ingredients, while Futura's Best contains 40% 
active ingredients and 60% inert ingredients. Warehouse facilities limit inventories to 500 tons of active 
ingredients and 1200 tons of inert ingredients, and they are completely replenished once a week. 

Futura Regular is similar to other fertilizers on the market and is competitively priced at $250 per 
ton. At this price, the company has !lad no difficulty in selling all the Futura Regular it produces. Futura's 
Best, however, has no competition, and so there are no constraints on its price. Of course, demand does 
depend on price, and through past experience the company has determined that price P (in dollars) and 
demand D (in tons) are related by P = 600- D. How many tons of each type of fertilizer should Futura 
produce weekly in order to maximize revenue? 

1.26 Explain why the following constitutes an analog solution to Problem 1.14. Imagine that Fig. 1-4 
represents the top of a tall table. Small holes are bored through the tabletop at points A, B, and 
C. The three ends of three lengths of string are joined in a knot, which lies on the tabletop; the three 
free ends are run through the holes, and, underneath the tabletop, three equal weights are hung from 
them. Then, assuming negligible friction, the equilibrium position of the knot gives the optimal 
location of the refinery. 



Chapter 2 
Linear Programming: 
Standard Form 

A method for solving linear programs involving many variables is described in Chapter 4. To 
initialize the method, one must transform all inequality constraints into equalities and must know one 
feasible, nonnegative solution. 

NONNEGATIVITY CONDmONS 

Any variable not already constrained to be nonnegative is replaced by the difference of two new 
variables which are so constrained. (See Problem 2.6.) 

Linear constraints (Chapter 1). are of the form: 

n 

L aiixi - bi (2.1) 
j=l 

where - stands for one of the relations :5, 2::, = (not necessarily the same one for each i). The 
constants bi may always be assumed nonnegative. 

Example 2.1 The constraint 2x~-3x2+4x3s-5 is multiplied by -1 to obtain -2x1+3x2-4XJ2:5, which 
has a nonnegative right-hand side. 

SLACK VARIABLES AND SURPLUS VARIABLES 

A linear constraint of the form ~ aijXi :5 bi can be converted into an equality by adding a new, 
nonnegative variable to the left-hand side of the inequality. Such a variable is numerically equal to 
the difference between the right- and left-hand sides of the inequality and is known as a slack variable. 
It represents the waste involved in that phase of the system modeled by the constraint. 

Example 2.2 The first constraint in Problem 1.6 is 

4xl + Sx2 + 3x3 + 5x4 s 30 000 

The left-hand side of this inequality models the total number of hours used to assemble all television consoles, 
while the right-hand side is the total number of hours available. This inequality is transformed into the 
equation 

4x 1 + Sx2 + 3x3 + 5x4 + Xs = 30 000 

by adding the slack variable xs to the left-hand side of the inequality. Here xs represents the number of 
assembly hours available to the manufacturer but not used. 

A linear constraint of the form ~ aiixi 2:: bi can be converted into an equality by subtracting a 
new, nonnegative variable from the left-hand side of the inequality. Such a variable is numerically 
equal to the difference between the left- and right-hand sides of the inequality and is known as a 
surplus variable. It represents excess input into that phase of the system modeled by the constraint. 

17 
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Example 2.3 The first constraint in Problem 1.5 is 

4Xi + 6xz + X3 :2:54 

The left-hand side of this inequality represents the combined output of high-grade ore from three mines, while 
the right-hand side is the minimum tonnage of such ore required to meet contractual obligations. This 
inequality is transformed into the equation 

4xi + 6x2 + X3- X4 =54 

by subtracting the surplus variable X4 from the left-hand side of the inequality. Here X4 represents the amount 
of high-grade ore mined over and above that needed to fulfill the contract. 

GENERATING AN INITIAL FEASffiLE SOLUTION 

After all linear constraints (with nonnegative right-hand sides) have been transformed into 
equalities by introducing slack and surplus variables where necessary, add a new variable, called an 
artificial variable, to the left-hand side of each constraint equation that does not contain a slack 
variable. Each constraint equation will then contain either one slack variable or one artificial 
variable. A nonnegative initial solution to this new set of constraints is obtained by setting each 
slack variable and each artificial variable equal to the right-band side of the equation in which it 
appears and setting all other variables, including the surplus variables, equal to zero. 

Example 2.4 The set of constraints 

xi+:!x2:s; 3 

4xi + Sx2 :2: 6 

7xi + 8x2 = 15 

is transformed into a system of equations by adding a slack variable, XJ, to the left-hand side of the first 
constraint and subtracting a surplus variable, X4, from the left-hand side of the second constraint. The new 
system is 

(2.2) 

If now artificial variables xs and X6 are respectively added to the left-hand sides of the last two constraints in 
system (2.2), the constraints without a slack variable, the result is 

Xi+2xz+XJ = 3 

4xi + 5xz - X4 + Xs = 6 

+ X6 = 15 

A nonnegative solution to this last system is X3 = 3, xs = 6, X6 = 15, and Xi= X2 = X4 = 0. (Notice, however, 
that Xi = 0, X2 = 0 is not a solution to the original set of constraints.) 

Occasionally, an initial solution can be generated easily without a full complement of slack and 
artificial variables. An example is Problem 2.5. 

PENALTY COSTS 

The introduction of slack and surplus variables. alters neither the nature of the constraints nor the 
objective. Accordingly, such variables are incorporated into the objective function with zero 
coefficients. Artificial variables, however, do change the nature of the constraints. Since they are 
added to only one side of an equality, the new system is equivalent to the old system of constraints if 
and only if the artificial variables are zero. To guarantee such assignments in the optimal solution 
(in contrast to the initial solution), artificial variables are incorporated into the objective function 



CHAP. 2] LINEAR PROGRAMMING: STANDARD FORM 19 

with very large positive coefficients in a minimization program or very large negative coefficients in a 
maximization program. These coefficients, denoted by either M or-M, where Misunderstood to be a 
large positive number, represent the (severe) penalty incurred in making a unit assignment to the 
artificial variables. 

In hand calculations, penalty costs can be left as ±M. In computer calculations, M must be 
assigned a numerical value, usually a number three or four times larger in magnitude than any other 
number in the program. 

STANDARD FORM 

A linear program is in standard form if the constraints are all modeled as equalities and if one 
feasible solution is known. In matrix notation, standard form is 

optimize: z = crx 
subject to: AX = B 

with: X 2::0 

(2.3) 

where X is the column vector of unknowns, including all slack, surplus, and artificial variables; cr is 
the row vector of the corresponding costs; A is the coefficient matrix of the constraint equations; and 
B is the column vector of the right-hand sides of the constraint equations. [Note: In the remainder 
of this book, vectors shall normally be represented as one-columned matrices, and we shall simply 
say "vector" instead of "column vector." Superscript T designates transposition.] If Xo denotes the 
vector of slack and artificial variables only, then the initial feasible solution is given by Xo = B, where it 
is understood that all variables in X not included in Xo are assigned zero values. 

Solved Problems 

2.1 Put the following program in standard matrix form: 

maximize: z = Xt + x2 

subject to: Xt + 5x2 :55 

2x1+ x2:54 

with: x 1 and x2 nonnegative 

Adding slack variables X3 and X4, respectively, to the left-hand sides of the constraints, and including 
these new variables with zero cost coefficients in the objective, we have 

maximize: z =XI+ X2 + Ox3 + Ox4 

subject to: XI+ 5x2 + X3 =5 (1) 

+x4=4 

with: all variables nonnegative 

Since each constraint equation contains a slack variable, no artificial variables are required; an initial 
feasible solution is X3 = 5, X4 = 4, XI = X2 = 0. System (1) is in the standard form (2.3) if we define 

C==[l,1,0,0f 

A"" [1 5 1 OJ 
2 1 0 1 B"" [~] Xo== [;:] 
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2.2 Put the following program in standard form: 

maximize: z = 80x 1 + 60x2 

subject to: 0.20x1 + 0.32x2 ::s: 0.25 

Xt + x2 = 1 

with: x1 and x2 nonnegative 

To convert the first constraint into an equality, add a slack variable X3 to the left-hand side. Since 
the second constraint, an equation, does not contain a slack variable, add an artificial variable X4 to its 
left-hand side. Both new variables are included in the objective function, the slack variable with a zero 
cost coefficient and the artificial variable with a very large negative cost coefficient, yielding the program 

maximize: z = 80x1 + 60x2 + Ox3- Mx4 

subject to: 0.20x1 + 0.32x2+ X3 

with: all variables nonnegative 

This program is in standard form, with an initial feasible solution X3 = 0.25, X4 = 1, x1 = x2 = 0. 

2.3 Redo Problem 2.2 if the objective is to be minimized. 

The only change is in the cost coefficient associated with the artificial variable; it becomes +M 
instead of - M. 

2.4 Put the following program in standard form: 

maximize: z = 5x1 + 2x2 

subject to: 6x 1 + x2 2:: 6 

4xt + 3x2 2:: 12 

Xt + 2x2 2:: 4 

with: x 1 and x2 nonnegative 

Subtracting surplus variables X3, X4, and xs, respectively, from the left-hand sides of the constraints, 
and including each new variable with a zero cost coefficient in the objective, we obtain 

maximize: z = Sx1 + 2x2 + Ox3 + Ox4 + Oxs 

subject to: 6x1 + X2- X3 = 6 

4xi + 3x2 

X1 + 2X2 

= 12 

-xs= 4 

with: all variables nonnegative 

Since no constraint equation contains a slack variable, we next add artificial variables X6, x1, and x 8 , 

respectively, to the left-hand sides of the equations. We also include these variables with very large 
negative cost coefficients in the objective. The program becomes 

maximize: z = Sx1 + 2x2 + Ox3 + Ox4 + Oxs- Mx6- Mx1- Mxs 

- Xs 

with: all variables nonnegative 

= 6 

= 12 

+xs= 4 

This progratn is in standard form, with an initial feasible solution X6 = 6, X1 = 12, xs = 4, X1 = X2 = X3 = 
X4 = Xs = 0. 
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2.5 Put the following program in standard matrix form: 

minimize: z = Xt + 2x2 + 3x3 

subject to: 3Xt 

Sx1 + x 2 + 6x3 = 7 

8x1 +9x3~2 

with: all variables nonnegative 
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Adding a slack variable X4 to the left-hand side of the first constraint, subtracting a surplus variable 
xs from the left-hand side of the third constraint, and then adding an artificial variable X6 only to the 
left-hand side of the third constraint, we obtain the program 

minimize: z =XI+ 2x2 + 3x3 + Ox4 + Oxs + Mx6 

subject to: 3xi =5 

:=7 

- Xs+ X6 = 2 

with: all variables nonnegative 

This program is in standard form, with an initial feasible solution X4 = 5, X2 = 7, X6 = 2, XI= X3 = xs = 0 
It has the form of system (2.3) if we define 

[

3 0 4 
A= 5 1 6 

8 0 9 

c =[1, 2, 3, o,o,Mr 

1 0 OJ [5] [X4] 0 0 0 B = 7 Xo = X2 
0 -1 1 2 X6 

In this case, x2 can be used to generate the initial solution rather than adding an artificial variable to 
the second constraint to achieve the same result. In general, whenever a variable appears in one and 
only one constraint equation, and there with a positive coefficient, that variable can be used to generate 
part of the initial solution by first. dividing the constraint equation by the positive coefficient and then 
setting the variable equal to the right-hand side of the equation; an artificial variable need not be added 
to the equation. 

2.6 Put the following program in standard form: 

minimize: z = 25x1 + 30x2 

subject to: 4Xt + 7x2 ~ 1 

8x1+Sx2 ~ 3 

6xi+9x2 ~-2 

Since both XI and X2 are unrestricted, we set XI = XJ- X4 and X2 = xs- X6, where all four new 
variables are required to be nonnegative. Substituting these quantities into the given program and then 
multiplying the last constraint by -1 to force a nonnegative right-hand side, we obtain the equivalent 
program: 

minimize; z = 25x3- 25x4 + 30xs- 30x6 

subject to; 4x3- 4x4 + 7xs- 7x6;;;;:: 1 

8x3- 8x4 + 5xs- 5x62: 3 

-6x3 + 6x4- 9xs + 9x6 :52 

with: all variables nonnegative 

This program is converted into standard form by subtracting surplus variables x1 and x8, respectively, 
from the left-hand sides of the first two constraints; adding a slack variable Xg to the left-hand side of the 
third constraint; and then adding artificial variables xw and x11, respectively, to the left-hand sides of the 
first two constraints. Doing so, we obtain 
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minimize: z = 25x3- 25x4 + 30xs- 30x6 +Ox?+ Oxs + Ox9 + Mxw + Mx11 

subject to: 4x3- 4x4 + 7xs -7x6- X7 

8x3 - 8x4 + 5xs- ~;X6 - Xs 

-6x3 + 6x4- 9xs + 9x6 + Xg 

+ XIO = 1 

+Xu= 3 

=2 

with: all variables nonnegative 

An initial solution to this program in standard form is 

xw = 1 Xu= 3 Xg == 2 X3 = X4 = Xs = X6 = X7 = Xs = Q 

Supplementary Problems 

Put each of the following programs in matrix standard form. 

minimize: z = 2x1- X2 + 4x3 

subject to: 5xi + 2x2- 3x3~ -7 

2XI- 2X2 + X3 :5 8 

with: X1 nonnegative 

maximize:: z = 10x1 + llx2 

subject to:: X1 + 2x2 :s; 150 

3xi + 4x2 :s; 200 

6x1 + x2:s; 175 

with:: X1 and X2 nonnegative 

2.9 Problem 2.8 with the three constraint inequalities reversed. 

2.10 minimize: z == 3xi + 2x2 + 4x3 + 6x4 

subject to: X1 + 2x2 + X3 + X4 ~ 1000 

2XI + X2+ 3X3+ 7X4~ 1500 

with: all variables nonnegative 

2.11 minimize: z = 6x1 + 3x2 + 4x3 

subject to: X1 + 6x2 + X3 = 10 

2XI + 3x2+ X3 = 15 

with: all variables nonnegative 

2.12 maximize: z = 1x1 + 2x2 + 3x3 + X4 

subject to: 2x1 + 1x2 = 7 

5x 1 + 8x2 + 2x4 = 10 

XI +X3 =11 

with: X1, x2, and X3 nonnegative 

[PART I 
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minimize: z = 10x1 + 2x2- X3 

subject to: X1 + x2 :s; 50 

X1 + X2 ~ 10 

X2 + X3 :5 30 

X2+ X3~ 7 

X1 + X2 + X3 = 60 

with: all variables nonnegative 
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Chapter 3 
Linear Programming: 
Theory of Solutions 

LINEAR DEPENDENCE AND INDEPENDENC}i: 

A set of m-dimensional vectors, {P~. P2, ••• , Pn}, is linearly dependent if there exist constants 
at, az, ... , an, not all zero, such that 

(3.1) 

Example 3.1 The set of 5-dimensional vectors 

{[1, 2, 0, 0, Of, [1, 0, 0, 0, Ofr, [0, 0, 1, 1, Of, [0, 1, 0, 0, Of} 

is linearly dependent, since 

-{~]+{~1+{~}2[ ]~[~] 
Theorem 3.1: Every set of m + 1 or more m-dimensional vectors is linearly dependent. 

A set of m-dimensional vectors, {P~, P2, ••• , Pn}, is linearly independent if the only constants for 
which (3.1) holds are a 1 = a 2 = · · ·=an= 0. (See Problems 3.1 and 3.2.) 

CONVEX COMBINATIONS 

An m -dimensional vector P is a convex combination of the m -dimensional vectors P~, P2, ••• , P n 

if there exist nonnegative constants {3~. {32, ••• , f3n whose sum is 1, such that 

(3.2) 

Example 3.2 The 2-dimensional vector [5/3, 5/6]T is a convex combination of the vectors [1, 1f, [3, or, and 
[1, 2f because 

[5/3] 1[1] 1[3] 1[1] 5/6 = 2 1 + 3 0 + 6 2 

Given two m -dimensional vectors, P 1 and P2, we call the set of all convex combinations of P1 and P2 

the line segment between the two vectors. The geometrical significance of this term is apparent in the 
case m = 3. 

CONVEX SETS 

A set of m -dimensional vectors is convex if whenever two vectors belong to the set then so too 
does the line segment between the vectors. 

Example 3.3 The disk shaded in Fig. 3-1(a) is a convex set since the line segment between any two of its 
points (2-dimensional vectors) is wholly within the disk. Figure 3-1(b) is not convex; although R and S belong 

24 
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(a) (b) 

Fig. 3-1 

to the shaded set, there exist points, such as T, belonging to the line segment between R and S which are not 
part of the star. 

A vector P is an extreme point of a convex set if it cannot be expressed as a convex combination 
of two other vectors in the set; that is, an extreme point does not lie on the line segment between any 
other two vectors in the set. 

Example 3.4 Any point on the circumference of the disk in Fig. 3-l(a) is an extreme point of the disk. 

Theorem 3.2: Any vector in a closed and bounded convex set with a finite number of extreme 
points can be expressed as a convex combination of the extreme points. 

Theorem 3.3: The solution space of a set of simultaneous linear equations is a convex set having a 
finite number of extreme points. 

EXTREME-POINT SOLUTIONS 

Let ::t designate the set of all feasible solutions to the linear program in standard form, (2.3); that 
is, ::t is the set of all vectors X that satisfy AX= 8 and X~ 0. From Theorem 3.3 and from the 
fact that convex sets intersect in convex sets (Problem 3.11),, it follows that ::1 is a convex set having a 
finite number of extreme points. 

Remark 1: The objective function attains its optimum (either maximum or minimum) at an extreme 
point of ::1, provided an optimum exists. (See Problem 3.12.) 

Remark 2: If A has order m x n (m rows and n columns), with m ::::;;; n, then extreme points of ::t have 
at least n- m zero components. (See Problem 3.13.) 

BASIC FEASmLE SOLUTIONS 

Denote the columns of the m x n coefficient matrix A in system (2.3) by A~o A2, ••• , An, 
respectively. Then the matrix constraint equation AX= 8 can be rewritten in the vector form 

(3.3) 

We emphasize that the A-vectors and 8 are known m -dimensional vectors; we wish to find nonnega­
tive solutions for the variables x., x2, ••• , Xn. We shall suppose that m ::::;;; n and that rank A= m, 
which means that at least one collection of m A-vectors is linearly independent. 

A basic feasible solution to (3.3) is obtained by setting n - m of the x-variables equal to zero and 
finding a nonnegative solution for the remaining x-variables, provided the m A-vectors correspond­
ing to the x-variables not set equal to zero are linearly independent. The x-variables not initially set 
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equal to zero are called basic variables. If one or more of the basic variables turns out to be zero, 
the basic feasible solution is degenerate; if all the basic variables are positive, the basic feasible 
solution is nondegenerate. (See Problems 3.7, 3.8, and 3.9.) 

Remarks 1 and 2 above can be strengthened as follows: 

Remark 1': The objective function attains its optimum at a basic feasible solution. 

Remark 2': The extreme points of ::tare precisely the basic feasible solutions. (See Problems 3.13 
and 3.14.) 

It follows that the standard linear program can be solved by seeking among the basic feasible 
solutions the one(s) at which the objective is optimized. A computationally efficient procedure for 
doing so is described in Chapter 4. 

Solved Problems 

3.1 Determine whether {[1, 2]T, [2, 4]T} is linearly independent. 

Calling the two vectors Pt and P2, it is obvious that P2 = 2P~, or 

2Pt + (-l)P2= 0 

Thus the given set of vectors is linearly dependent (not linearly independent). 

3.2 Is {[1, 1, 3, 1]T, [1, 2, 1, 1]T, [1, 0, 0, 1]T} linearly independent? 

For these vectors, (3.1) becomes 

at+ a2+a3= 0 
at+ 2a2 = 0 

or 
3at + a2 = 0 
at+ a2+a3=0 

The first three equations (the fourth is redundant) have at= a2 = a3 = 0 as the only solution. There­
fore, the given set of vectors is linearly independent. 

3.3 A vector Q is a linear combination of the vectors Q1, Q2, ..• , Qn if there exist constants 
8., 8z, ... , 8n such that 

Q = s.Q. + 8zQz+ ... + 8nQn 

Show that the set of vectors {P., P2, •.. , Pn} is linearly dependent if and only if one of the 
vectors is a linear combination of the rest. 

If P, = 8tPt + · · · + 8,-tPi-t + 8i+tPi+t + · · · + 8nPn, in which some or all of the 8's may be zero, 
then 

8tPt + · · · + 8t-tPi--t + (-l)P, + 8i+tPi+t + · · · + 8nPn = 0 

and so the set is linearly dependent. 
On the other hand, if the set is linearly dependent, let ai be the first nonzero coefficient in 

(3.1). Then, 

i.e., Pi is a linear combination of the remaining vectors. 
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3.4 Determine whether (1, 2, 3]T is a linear combination of 

[1, 2, 1]T [1, 1, 1JT [2, 3, 2]T 

It is not; any linear combination of the three vectors must have its first and third components equal. 
(More generally: 

iff 

But this second system has no solution.) 

8t + 82 + 283 = 1 
28t + 82 + 383 = 2 
8t + 82 + 283 = 3 

3.5 Prove that if {P., P2, ... , P,} is a linearly independent set of vectors and Pis a vector such that 

r 

P= L c1P1 
j=l 

then c1 = d; (j = 1, 2, ... , r). 

and 

Subtracting the two representations, we obtain 
r 

L (cj - dj )Pi = 0 
j=l 

r 

P= L d;P; 
j=l 

which is (3.1) with ai = ci- di and n = r. Since Pt, P2, ... , P, are linearly independent, it follows 
that ci- di = 0, or ci = di U = 1, 2, ... , r). 

3.6 Write the constraint equations of the following linear program in the vector form (3.3): 

minimize: z = 2x. + 3x2 + x 3 + Ox4 + Mx5 + Ox6 

subject to: x. + 2x2 + 2x3 - X4 + x 5 = 3 

2x. + 3x2 + 4x3 + x6 = 6 

with: all variables nonnegative 

For this problem, (3.3) becomes 

3.7 Determine whether [1, 0, 1, 0, 0, OJT is a basic feasible solution to the linear program given in 
Problem 3.6. 

Although all its components are nonnegative, the proposed solution is not basic. The vectors At 
and A3 associated with the x-variables not set equal to zero are not linearly independent (Problem 3.1). 

3.8 Determine whether [1, 0, 0, 0, 2, 4]T is a basic feasible solution to the linear program given in 
Problem 3.6. 

The coefficient matrix A, comprised of the column vectors At through &,, has order 2 x 6. There­
fore, a basic feasible solution must have at least 6- 2 = 4 zero components (variables), which is not the case 
here. 

3.9 Find two different basic feasible solutions to the linear program given in Problem 3.6. 

Since n - m = 4, a basic feasible solution will have four x-variables set equal to zero. With Xt 
through X4 made zero, the vector constraint equation becomes 
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which has the (nonnegative) solution X5 = 3, X6 = 6. Since A5 and ~ are linearly independent, the 
complete solution, [0, 0, 0, 0, 3, 6f, is basic. Here the basic variables are X5 and X6, and since both of 
them are positive, the solution is also nondegenerate. 

To obtain a second basic feasible solution, we set X3 = X4 = X5 = X6 = 0, whereupon the vector 
constraint equation becomes 

Solving this equation for Xt and x2, we find Xt == 3 and X2 = 0. The corresponding A-vectors, At and A2, 
are linearly independent, so the complete solution, [3, 0, 0, 0, 0, Of, is basic. The basic variables are Xt 
and x2, and since one of them is zero, the solution is degenerate. 

3.10 Determine whether the vector [0, 7jT is a convex combination of the set {[3, 6jT, 
[ -6, 9]T, [2, 1 ]T, [ -1, 1 ]T}. 

For these vectors, (3.2) becomes 

or 
3{3t- 6{32 + 2{33- {34 = 0 

6{31 + 9{32 + {33 + {34 = 7 

To these equations we add a third condition, 

f3t + {32 + {33 + {34 = 1 

(1) 

(2) 

We must determine whether there exist nonnegative values of (3~, {32, {33, and {34 that simultaneously 
satisfy (1) and (2). Solving these equations, we obtain 

{32 =!- f6{34 {33 = (-19/16){34 

with {34 arbitrary. The choice {34 = 0 is forced, giving 

as an acceptable set of constants. Thus, [0, 7]T is a convex combination of the given set of four vectors. 

3.11 If 22 and ~ are convex sets, show that their intersection 22 n~ is a convex set. 

Let X and Y be any two vectors in !!l n 9/l. Then the line segment between X and Y is in !!l (because 
X andY are in !!l, and !!l is convex) and it is in 9/l (similarly). Thus, the line segment is in !!l n 9ll; and so 
!!l n 9/l is convex. 

In the case that !!l and 9/l are convex polyhedra (have finitely many extreme points), it is intuitively 
obvious that the intersection is also a convex polyhedron. 

3.12 Prove that the objective function z = f(X) = crx of system (2.3) assumes its optimum (say, a 
minimum) at an extreme point of ::1, provided a minimum exists and ::t is bounded. 

If a minimum exists, then there exists a point Xo E Y such that 

f(Xo),.;; .f(X) for all X E Y (1) 

If Xo is an extreme point of Y, we are done. If not, we must produce an extreme point Xm such 
that /(Xm) = f(Xo). 

Now, Y has only a finite number of extreme points: we designate them as X~, X2, ... , Xp. Because 
Y is bounded (as well as being closed), Theorem 3.2 ensures that Xo can be written as a convex 
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combination of these extreme points; i.e., there exist nonnegative 131 (j = 1, 2, ... , p ), whose sum is 1, 
such that 

Let the minimum of /(X) over the extreme points be assumed at Xm. By (1 ), /(Xo) s /(Xm ). But 

/(Xo) = t(~ fJ1X1) == 1~ fJJ(XJ) 2: 1~ fJJ(Xm) = /(Xm) ~ fJ1 = /(Xm) (2) 

Consequently, f(Xo) = f(Xm), and so there is an extreme point, namely Xm, at which /(X) assumes its 
minimum. 

According to the fundamental Weierstrass theorem (Theorem 11.1), a continuous function-in 
particular, a linear function such as f(X)-actually assumes a minimum value on a closed and bounded 
region. We conclude that the standard linear program always possesses an extreme-point optimal 
solution when Y is bounded. If Y is not bounded, the optimum may not exist; however, if it does exist, 
it is again assumed at an extreme point. 

3.13 Prove that every extreme point of ::t has at least n - m zero components and is a basic feasible 
solution. 

Let X= [x~, x2, ... , xnf be an extreme point of Y. Without loss of generality, we can assume that 
the x-variables have been indexed so that x~, x2, ... , x, (r s n) are positive and all subsequent com­
ponents of X, if any, are zero. Since X E Y, we have AX= B, which, as a consequence of x1 = 
0 for j > r, can be written in the vector form 

(1) 

We first show that the vectors A1 involved in (1) are linearly independent. Assume they are 
not. Then there exist constants a~, a2, ... , a,, not all zero, such that 

(2) 

Let (} be a positive number; then (1) and (2) give 

and L (XJ- fJaj)AJ == B (3) 
i=! }=1 

If (} is chosen small enough so that x1 + 8a1 and x1 - 8a1 remain positive for all j = 1, 2, ... , r, then it 
follows directly from (3) that 

Xt = [Xt + 8at, X2 + 8a2, ... 'x, + fJa,., 0, 0, ... 'Of 
x2 = [xt- 8at, X2- 8a2, ... 'x,- fJa,, 0, 0, ... 'O]T 

are distinct elements of Y. But then X= ~Xt + ~X2, which is impossible, since X is an extreme point of 
Y. Thus, {At, A2, ... , A,} must be a linearly independent set. 

Since the vectors are m-dimensional, it follows from Theorem 3.1 that there can be no more than m 
of them which are linearly independent; accordingly, r sm. But all components of X past the rth one are 
zero; hence X must have at least n - m zero components. 

In case r = m, the above proof at once establishes that X is a basic feasible solution. If r < m, 
we can always (supposing rank A = m) identify m - r zero components of X such that their cor­
responding A-vectors combine with At. A2, ... , and A, to make up a linearly independent set. Thus, 
once more, X is a basic feasible solution. 

3.14 Prove that every basic feasible solution is an extreme point of ::f. 

Let X be a basic feasible solution. Then, X E Y and at least n - m of the components of X are 
zero. Without loss of generality, we can assume that the x-variables have been indexed so that the 
positive components of X appear first: 

X== [x~, x2, ... , x., 0, 0, ... , O]T (1) 
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with xi > 0 U = 1, 2, ... , s) and s sm. Consequently, the equality AX= B can be written in the vec­
tor form 

where, as a result of X being basic, the set {A~, A2, ... , A,} is linearly independent (see Problem 3.22). 
Assume that X is not an extreme point of 9'. Then X can be expressed as a convex combination of 

two other points in Y: 

where (2) 

Since the components of Xt and X2 are nonnegative, and the constants f3t and {32 are strictly positive, it 
follows from (1) and (2) that the last n - s components of Xt and X2 also are zero. Therefore, 

Xt =[ct. C2, ••• 'c., 0, 0, ... 'oy X2= [dt, d2, ... 'd., 0, 0, ... ,O]T (3) 

In view of (3), AXt = B and AX2 = B take the vector forms 

and 
j=l 

Using the result of Problem 3.5, we conclude that ci = db whence Xt = X2. This contradiction 
establishes that X is, in fact, an extreme point. 

3.15 Show that the initial solution Xo generated in Chapter 2 is a basic feasible solution. 

The set of A-vectors corresponding to the initial solution are the columns of the m x m identity 
matrix, which are linearly independent. 

Supplementary Problems 

3.16 Determine graphically whether [1, 2f is a convex combination of [1, 1f and [2, -1f. 

3.17 Write the constraint equations for the following linear program in vector form: 

minimize: z = Xt + 2x2 + OxJ + Mx4 + Ox5 

subject to: Xt + 2x2 + XJ = 3 

-x4+X5 = 6 

with: all variables nonnegative 

3.18 Determine which of the following vectors are basic feasible solutions to the linear program of Problem 
3.17. Are any of the basic feasible solutions degenerate? 

(a) [1, 1, 0, 0, Of (b) [3,0,Q,Q,Q]T (c) [0, 0, 3, 0, 6f 

3.19 Write the constraint equations for the following linear program in vector form: 

maximize: z = Xt + 2x2 + 3xJ + 4x4 + Ox5 + Ox6 + Ox7 

subject to: Xt + 2X2 + X3 + 3x4 + X5 

with: all variables nonnegative 

=9 

=9 

(d) [0, 0, 3, 2, 8f 



CHAP. 3] LINEAR PROGRAMMING: THEORY OF SOLUTIONS 31 

3.20 Determine which of the following vectors are basic feasible solutions to the linear program of Problem 
3.19. Are any of the basic feasible solutions degenerate? 

(a) [3,3,0,0,0,0,0]T 

(b) [2, 2, 0, 1, 0, 0, ov 
(c) [0, 0, 0, 3, 0, 0, OV 
(d) [0, 0, 0, 0, 9, 9, ov 

(e) [1, 0, 0, 0, 8, 7, 1V 

(f) [o, o, 9, o, o, 9, -9V 

3.21 Prove that if a linear function assumes its minimum at two different points of a convex set, then it 
assumes this minimum on the entire line segment between the points. 

3.22 Prove that every nonempty subset of a linearly independent set of vectors is itself linearly independent. 

3.23 Prove that any set of vectors containing the zero vector is linearly dependent. 



Chapter 4 
Linear Programming: 
The Simplex Method 

THE SIMPLEX TABLEAU 

The simplex method is a matrix procedure for solving linear programs in the standard form 

optimize: z = crx 

subject to: AX= B 

with: x~o 

where 8 2:0 and a basic feasible solution Xo is known (Problem 3.15). Starting with Xo, the method 
locates successively other basic feasible solutions having better values of the objective, until the 
optimal solution is obtained. For minimization programs, the simplex method utilizes Tableau 4-1, 
in which C0 designates the cost vector associated with the variables in Xo. 

xr 
cr 

Xo Co A B 

cr -C6A -C6B 

Tableau 4-1 

For maximization programs, Tableau 4-1 applies if the elements of the bottom row have their signs 
reversed. 

Example 4.1 For the minimization program of Problem 2.5, Co = [0, 2, M] r. Then, 

cr -CJ'A= [1,2,3,0,0,M]-[0,2,M][~ ~ : ~ ~ ~] 
8 0 9 0 -1 1 

= [1, 2, 3, O,O,M]- [10+ 8M, 2, 12+ 9M,O, -M,M] = [-9-8M,O, -9-9M, O,M,O] 

-dB~ -[0, 2,M{ n~ -14-2M 

and Tableau 4-1 becomes 

X! X2 XJ X4 xs X6 

2 3 0 0 M 

X4 0 3 0 4 0 0 5 
X2 2 5 1 6 0 0 0 7 
X6 M 8 0 9 0 -1 1 2 

-9-BM 0 -9-9M 0 M 0 -14-2M 

32 
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A TABLEAU SIMPLIFICATION 

For each j (j = 1, 2, ... , n ), define zi = c;r Ai> the dot product of Co with the jth column of A. 
The jth entry in the last row of Tableau 4-1 is ci- zi (or, for a maximization program, zi- ci), where ci 
is the cost in the second row of the tableau, immediately above Ai. Once this last row has been obtained, 
the second row and second column of the tableau, corresponding to cr and C0, respectively, become 
superfluous and may be eliminated. 

THE SIMPLEX METHOD 

S1EP 1 Locate the most negative number in the bottom row of the simplex tableau, excluding the 
last column, and call the column in which this number appears the work column. If more 
than one candidate for most negative number exists, choose one. 

S1EP 2 Form ratios by dividing each positive number in the work column, excluding the last row, 
into the element in the same row and last column. Designate the element in the work 
column that yields the smallest ratio as the pivot element. If more than one element yields 
the same smallest ratio, choose one. If no element in the work column is positive, the 
program has no solution. 

S1EP 3 Use elementary row operations to convert the pivot element to 1 and then to reduce all 
other elements in the work column to 0. 

S1EP 4 Replace the x-variable in the pivot row and first column by the x-variable in the first row 
and pivot column. This new first column is the current set of basic variables (see Chapter 
3). 

S1EP 5 Repeat Steps 1 through 4 until there are no negative numbers in the last row, excluding the 
last column. 

S1EP 6 The optimal solution is obtained by assigning to each variable in the first column that value 
in the corresponding row and last column. All other variables are assigned the value 
zero. The associated z*, the optimal value of the objective function, is the number in the 
last row and last column for a maximization program, but the negative of this number for a 
minimization program. 

MODIFICATIONSFORPROG~S~ 

ARTIFICIAL VARIABLES 

Whenever artificial variables are part of the initial solution Xo, the last row of Tableau 4-1 will 
contain the penalty cost M (see Chapter 2). To minimize roundoff error (see Problem 4.6), the 
following modifications are incorporated into the simplex q1ethod; the resulting algorithm is the 
two-phase method. 

Change 1: The last row of Tableau 4-1 is decomposed into two rows, the first of which involves 
those terms not containing M, while the second involves the coefficients of M in the 
remaining terms. 

Example 4.2 The last row of the tableau in Example 4.1 is 

-9-8M 0 -9-9M 0 M 0 -14-2M 

Under Change 1 it would be transformed into the two rows 

-9 

-8 
0 

0 

-9 

-9 

0 0 0 

0 1 0 

-14 

- 2 
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Change 2: Step 1 of the simplex method is applied to the last row created in Change 1 (followed by 
Steps 2, 3, and 4), until this row contains no negative elements. Then Step 1 is applied 
to those elements in the next-to-last row that are positioned over zeros in the last row. 

Change 3: Whenever an artificial variable ceases to be basic-i.e. is removed from the first column 
of the tableau as a result of Step 4--it is deleted from the top row of the tableau, as is 
the entire column under it. (This modification simplifies hand calculations but is not 
implemented in many computer programs.) 

Change 4: The last row can be deleted from the tableau whenever it contains all zeros. 

Change 5: If nonzero artificial variables are present in the final basic set, then the program has no 
solution. (In contrast, zero-valued artificial variables may appear as basic variables in the 
final solution when one or more of the original constraint equations is redundant.) 

4.1 

Solved Problems 

maximize: z = Xt + 9x2 + X3 

subject to: x 1 + 2x2 + 3x3 s 9 

3x 1 + 2x2 + 2x3 s 15 

with: all variables nonnegative 

This program is put into matrix standard form by first introducing slack variables X4 and xs in the 
first and second constraint inequalities, respectively, and then defining 

X== [xt, X2, X3, X4, xs]T c == [1, 9, 1, 0, or 
A==[; 

2 3 1 OJ B== L;] Xo== [~:] 2 2 0 1 

The costs associated with the components of Xo, the slack variables, are zero; hence Co== 
[O,Of. Tableau 4-1 becomes 

Xt X2 X3 X4 xs 
9 1 0 0 

X4 0 2 3 1 0 9 
xs 0 3 2 2 0 1 15 

To compute the last row of this tableau, we use the tableau simplification and first calculate each zi 

by inspection: it is the dot product of column 2 and the jth column of A. We then subtract the 
corresponding cost ci from it (maximization program). In this case, the second column is zero, and so 
Zi - ci = 0- ci = -ci. Hence, the bottom row of the tableau, excluding the last element, is just the negative 
of row 2. The last element in the bottom row is simply the dot product of column 2 and the final, 
8-column, and so it too is zero. At this point, the second row and second column of the tableau are 
superfluous. Eliminating them, we obtain Tableau 1 as the complete initial tableau. 

Xt X2 X3 X4 xs XI X2 XJ X4 xs 

X4 2* 3 0 9 X2 1/2 3/2 1/2 0 9/2 
xs 3 2 2 0 15 xs 2 0 -1 -1 6 

(Zj- Cj): -1 -9 -1 0 0 0 7/2 0 25/2 9/2 0 81/2 

Tableau 1 Tableau 2 
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4.2 

We are now ready to apply the simplex method. The most negative element in the last row of 
Tableau 1 is -9, corresponding to the xrcolumn; hence this column becomes the work column. Form­
ing the ratios 9/2 = 4.5 and 15/2 = 7.5, we find that the element 2, marked by the asterisk in Tableau 1, 
is the pivot element, since it yields the smallest ratio. Then, applying Steps 3 and 4 to Tableau 1, we 
obtain Tableau 2. Since the last row of Tableau 2 contains no negative elements, it follows from Step 6 
that the optimal solution is x~ = 9/2, x~ = 6, xt = x~ = x~ = 0, with z" = 81/2. 

minimize: z = 80x1 + 60x2 

subject to: 0.20x1 + 0.32x2 ~ 0.25 

X1 + Xz = 1 

with: x 1 and x2 nonnegative 

Adding a slack variable X3 and an artificial variable X4 to the first and second constraints, respectively, 
we convert the program to standard matrix form, with 

C ""' [80, 60, 0, M]T 

A""' [0.20 0.32 1 OJ 
1 1 0 1 

Substituting these matrices, along with Co~ [0, Mf, into Tableau 4-1, we obtain Tableau 0. Since the 
bottom row involves M, we apply Change 1; the resulting Tableau 1 is the initial tableau for the 
two-phase method. 

Xt X2 X3 X4 

80 60 0 M 

X3 0 0.20 0.32 0 0.25 
X4 M 1 1 0 1 1 

80-M 60-M 0 0 -M 

Tableau 0 

Xt X2 XJ X4 Xt X2 XJ 

X3 0.20 0.32 0 0.25 XJ 0 0.12* 1 0.05 
X4 1* 1 0 1 1 Xt 1 0 1 

(Cj-Zj); 80 60 0 0 0 0 -20 0 -80 
-1 -1 0 0 -1 0 0 0 0 

Tableau 1 Tableau 2 

Using both Step 1 of the simplex method and Change 2, we find that the most negative element in 
the last row of Tableau 1 (excluding the last column) is -1, which appears twice. Arbitrarily selecting 
the Xt·Column as the work column, we form the ratios 0.25/0.20 = 1.25 and 1/1 = 1. Since the element 
1, starred in Tableau 1, yields the smallest ratio, it becomes the pivot. Then, applying Steps 3 and 4 and 
Change 3 to Tableau 1, we generate Tableau 2. Observe that Xt replaces the artificial variable X4 in the 
first column of Tableau 2, so that the entire x4-column is absent from Tableau 2. Now, with no artificial 
variables in the first column and with Change 3 implemented, the last row of the tableau should be all 
zeros. It is; and by Change 4 this row may be deleted, giving 

0 -20 0 -80 

as the new last row of Tableau 2. 
Repeating Steps 1 through 4, we find that the xrcolumn is the new work column (recall that the last 

element in the last row is excluded under Step 1), the starred element in Tableau 2 is the new pivot, and 
the elementary row operations yield Tableau 3, in which all calculations have been rounded to four 
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significant figures. Since the last row of Tableau 3, excluding the last column, contains no negative 
elements, it follows from Step6 that xT = 0.5833, x~ = 0.4167, xJ = xl = 0, with z* = 71.67. (Compare 
with Problem 1.2.) 

Xt 

0 
1 

0 

1 
0 

(I 

8.333 
-8.333 

166.7 

Tableau 3 

maximize: z = 5x1 + 2x2 

subject to: 6x1 + xz 2: 6 

4xt + 3x2 2: 12 

Xt + 2xz2: 4 

0.4167 
0.5833 

-71.67 

with: all variables nonnegative 

This program is put into standard form by introducing surplus variables XJ, X4, and X5, respectively, 
in the constraint inequalities, and then artificial variables X6, X7, and xs, respectively, in the resulting 
equations. Then, applying the two-phase method and rounding all calculations to four significant 
figures, we generate sequentially the following tableaux, in each of which the pivot element is marked by 
an asterisk. 

Xt X2 XJ X4 Xs x6 X7 Xs 

5 2 0 0 0 -M -M -M 

X6 -M 6* 1 -1 0 0 1 0 0 6 
X7 -M 4 3 0 -1 0 0 1 0 12 
Xs -M 1 2 0 0 -1 0 0 1 4 

(Zj- q): -5 -2 0 0 0 0 0 0 0 
-11 -6 1 1 1 0 0 0 -22 

Tableau 1 

Xt X2 XJ X4 Xs X7 Xs 

Xt 1 0.1667 -0.1667 0 0 0 0 1 
X7 0 2.333 0.6668 -1 0 1 0 8 
xs 0 1.833* 0.1667 0 -1 0 1 3 

0 -1.167 -0.8335 0 0 0 0 5 
0 -4.166 -0.8337 1 1 0 0 -11 

Tableau 2 

Xt X2 XJ X4 xs X7 

Xt 1 0 -0.1819 0 0.09095 0 0.7271 
X7 0 0 0.4546 -1 1.273* 1 4.181 
X2 0 0.09094 0 -0.5456 0 1.637 

0 0 -0.7274 0 -0.6367 0 6.910 
0 0 -0.4548 -1.273 0 -4.180 

Tableau 3 
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4.4 

Xi X2 XJ X4 xs 

x, 1 0 -0.2144 0.07144* 0 0.4284 
xs 0 1 0.3571 -0.7855 1 3.284 
X2 0 1 0.2858 -0.4286 0 3.429 

0 0 -0.5000 -0.5001 0 9.001 
0 0 -0.0002 0.0001 0 0.0005 

Tableau 4 

x, X2 XJ X4 xs 

X4 14.00 0 -3.001 1 0 6.000 
xs 11.00 0 -2.000 0 1 7.997 
X2 6.000 1 -1.000 0 0 6.001 

7.001 0 -2.001 0 0 12.00 

Tableau 5 

Tableau 4 is the first tableau containing no artificial variables in its first column, hence, with Change 3 
implemented, the last row of the tableau should be zero. To within roundoff errors it is zero, so we 
delete it from the Tableau. Tableau 5, however, presents a problem that cannot be ignored: the work column 
is the x 3-column and all the elements in that column are negative! It follows from Step 2 that the original 
program has no solution. (It is easy to show graphically that the feasible region is infinite and that the 
objective function can be made arbitrarily large by choosing feasible points with arbitrarily large 
coordinates.) 

maximize: z = 2xt + 3x2 

subject to: Xt + 2xz ~ 2 

6x1 +4xz~24 

with: all variables nonnegative 

This program is put in standard form by introducing a slack variable XJ to the first constraint, and 
both a surplus variable X4 and an artificial variable xs to the second constraint. Then Tableau 4-1, with 
Change 1, becomes Tableau 1. 

Xt X2 XJ X4 xs 
2 3 0 0 -M Xt X2 XJ X4 xs 

XJ 0 1* 2 0 0 2 Xt 1 2 1 0 0 2 
xs -M 6 4 0 -1 24 xs 0 -8 -6 -1 12 

(Zj- Cj): -2 -3 0 0 0 0 0 2 0 0 4 
-6 -4 0 0 -24 0 8 6 0 -12 

Tableau 1 Tableau 2 

Applying the two-phase algorithm to Tableau 1 (the pivot element is starred), we generate Tableau 
2. Now, there are no negative entries in the last row of Tableau 2, and in the next-to-last row there is 
no negative entry positioned above a zero of the last row. Thus, the two-phase method signals that 
optimality has been achieved. But the nonzero artificial variable xs is still basic! By Change 5, the 
original program has no solution. (In this case Y is empty, as the constraint inequalities and the 
nonnegativity conditions cannot be satisfied simultaneously.) 
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maximize: z = -x5 

subject to: 3x:.- 2xz- 4x3 + 6x4- xs::::;; 0 

-4x: + 2xz- X3- 8x4- Xs::::;; 0 

- 3x2- 2x3- X4- Xs::::;; 0 

X1 + Xz + X3 + X4 ::::;; 1 

-- X1 - Xz- X3- X4 ::::;; -1 

with: x 1, xz, x 3, x 4 nonnegative 

[PART I 

Since xs is unrestricted, we set xs = X6- x1, where both X6 and x1 are nonnegative; then all var­
iables are nonnegative. We multiply the last constraint by -1, thereby forcing a positive right-hand 
side. Finally, we achieve standard form by adding slack variables xs through xu, respectively, to the 
left-hand sides of the first four constraints, and subtracting surplus variable x12 and adding artificial 
variable X13 to the left-hand side of the last constraint. The initial tableau for the two-phase method is 
Tableau 1, from which are derived Tableaux 2, 3, ... , 6. From Tableau 3 on, the bottom row is 
permanently nonnegative, and Step 1 of the simplex method is restricted to those elements of the 
next-to-last row that are situated above the zeros of the last row. From Tableau 6, 

xT = 0 x! = 0.11667 X~= 0.7 xl = 0.18333 X; =X~- X~ = -1.93334 

with z * = 1.93334. 

Xi X2 X3 X4 Xo X7 Xs X9 xw Xu Xi2 Xi3 

0 0 0 0 -1 1 0 0 0 0 0 -M 

Xs 0 3* -2 -4 6 -I 1 1 0 0 0 0 0 0 
X9 0 -4 2 -1 -8 -I 1 0 1 0 0 0 0 0 
xw 0 0 -3 -2 -1 -I 1 0 0 1 0 0 0 0 
xu 0 1 1 1 1 I) 0 0 0 0 1 0 0 1 
XiJ -M 1 1 1 1 I) 0 0 0 0 0 -1 1 1 

(Zj- Cj): 0 0 0 0 1 -1 0 0 0 0 0 0 0 
-1 -1 -1 -1 () 0 0 0 0 0 1 0 -1 

Tableau 1 

Xi x2 XJ X4 X6 X7 Xs X9 xw xu Xi2 xu 

Xi 1 -0.666667 -1.33333 2 -0.333333 0.333333 0.333333 0 0 0 0 0 0 
X9 0 -0.666668 -6.33332 0 -2.333333 2.33333 1.33333 1 0 0 0 0 0 
Xw 0 -3 -2 -1 -1 1 0 0 1 0 0 0 0 
Xu 0 1.66667 2.33333* -1 0.333333 -0.333333 -0.333333 0 0 1 0 0 1 
X13 0 1.66667 2.33333 -1 0.333333 -0.333333 -0.333333 0 0 0 -1 1 1 

0 0 0 0 I -I 0 0 0 0 0 0 0 
0 -1.666667 -2.33333 1 -0.333333 0.333333 0.333333 0 0 0 1 0 -1 

Tableau 2 

Xi X2 XJ X4 X6 X7 Xs X9 xw Xu xl2 xu 

Xi 1 0.285715 0 1.42857 -0.142857 0.142857 0.142857 0 0 0.571428 0 0 0.571428 
X9 0 3.85715 0 -2.71428 -1.42857 1.42857 0.428571 1 0 2.71427 0 0 2.71427 
xw 0 -1.57142 0 -1.85714 -0.714286 0.714286* -0.285714 0 1 0.857144 0 0 0.857144 
XJ 0 0.714288 I -0.428572 0.142857 -0.142857 -0.142857 0 0 0.428572 0 0 0.428572 
xi, 0 0 0 0 0 0 0 0 0 -1 -1 1 0 

0 0 0 0 1 -1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 

Tableau 3 
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x, X2 X3 X4 X6 X? Xg X9 X!O Xn X12 Xn 

X4 0.583333 0 0 1 0 0 0.0666667 -0.05 -O.Q166668 0.183333 0 0 0.183333 
X2 -0.0833332 1 0 0 0 0 0.133333 0.15 -0.283333 0.116667 0 0 0.116667 
x, 1.33333 0 0 0 -1 1 0.0666671 0.20 0.733334 1.93334 0 0 1.93334 
X3 0.499999 0 1 0 0 0 -0.200000 -0.10 0.300000 0.700000 0 0 0.700000 
X13 0 0 0 0 0 0 0 0 0 -1 -1 1 0 

1.33333 0 0 0 0 0 0.0666659 0.20 0.733333 1.93334 0 0 1.93334 
0 0 0 0 0 0 0 0 0 1 1 0 0 

Tableau 6 

4.6 Solve the following program using the simplex method without any of the modifications (such 
a procedure is known as the Big M method) and show how roundoff could affect the answer: 

maximize: z = -8xt + 3x2- 6x3 

subject to: Xt- 3x2 + Sx3 = 4 

Sx1 + 3x2 - 4x3 2: 6 

with: all variables nonnegative 

This program is put in standard form by introducing the surplus variable X4 in the inequality constraint 
and then artificial variables xs and X6 in the two equality constraints. Substituting the appropriate 
coefficients into Tableau 4-1 and then applying the simplex method directly, with all calculations rounded to 
four significant figures and with the pivot elements designated by stars, we generate successively Tableaux 1 
through 4. 

Xt X2 XJ X4 xs X6 

-8 3 -6 0 -M -M 

xs -M -3 5 0 1 0 4 
X6 -M 5* 3 -4 -1 0 6 

(Zi- Cj): -6M+8 -3 -M+6 M 0 0 -10M 

Tableau 1 

Xt X2 XJ X4 xs X6 

xs 0 -3.6 5.8* 0.2 -0.2 2.8 
X! 0.6 -0.8 -0.2 0 0.2 1.2 

0 3.6M-7.8 -5.8M+ 12.4 -0.2M+ 1.6 0 1.2M- 1.6 -2.8M-9.6 

Tableau 2 

Xt X2 XJ X4 xs X6 

XJ 0 -0.6207 1 0.03448 0.1724 -0.03448 0.4828 
Xt 1 0.1034* 0 -0.1724 0.1379 0.1724 1.586 

0 -0.1033 0 1.172 M-2.138 M-1.172 -15.59 

Tableau 3 

Xt X2 X3 X4 xs X6 

X3 6.003 0 -10.00 1.000 10.00 10.00 
X2 9.671 1 0 -1.667 1.334 1.667 15.34 

0.9990 0 0 0.9998 M-2 M-0.9998 -14.01 

Tableau 4 
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Since M designates a large positive number, all the entries in the last row of Tableau 4, excluding 
the entry in the last column, are nonnegative. The optimal solution, therefore, can be read directly 
from it as x~ = 10.00, x~ = 15.34, and all other variables zero, with z* = -14.01. 

The quantity M in the previous calculations could be left as a letter only because those calculations 
were done by hand. Had a computer been used, a large numerical value would necessarily have been 
substituted forM; say, M = 10000. Then, assuming again that all numbers are rounded to four signi­
ficant figures, the bottom row of Tableau 1 becomes 

-60000 -3 -10000 10000 0 0 -100000 

Note that the additive constants +8 in the first entry and +6 in the third entry are lost in roundoff. The 
bottom row of Tableau 2 becomes 

0 36000 -58000 -2000 12000 -28000 

while the bottom row of Tableau 3 is 

0 0 0 0 10000 10000 0 

which signals optimality! The erroneous optimal solution would be read from Tableau 3 as x~ = 

0.4828, xT = 1.586, and all other variables zero, with z* = 0. 
This roundoff problem does not occur in the two-phase method since the terms that do not involve 

M are separated from those that do, making it impossible for theM-terms to "swamp" the others. 

4.7 Solve Problem 1.7. 

Using the mathematical program defined by system (12) in Problem 1.7, we introduce slack variables 
xs through X12, one each to the first eight inequality constraints; surplus variables X13 and X14, one each to 
the last two inequality constraints; and artificial variables X1s and XI6, one each to the last two constraints. 
Entering the appropriate coefficients into Tableau 4-1 and using Change 1, we get Tableau 1. Then, 
applying the two-phase method, we generate Tableaux 2, ... , 5. The optimal solution is read directly 
from Tableau 5 as xT = 37727.3 bbl, x~ = 12272.7 bbl, x~ = 2272.7 bbl, x! = 2727.3 bbl, with z* = 
$125000. 

Under this optimal production schedule, Aztec will produce x T + x ~ = 50 000 bbl of regular having 
a vapor pressure of 22.5 and an octane rating of 89.7. It will also produce x~ + x! = 5000 bbl of 
premium having a vapor pressure of 19.5 and an octane rating of 93.0. Thus, it will produce exactly the 
amount needed to meet its minimum supply requirements, and no more. To do so, Aztec will use 
xi+ x~ = 40 000 bbl of its domestic inventory-all it has-and x~ + x! = 15 000 bbl of its foreign 
inventory. 

X1 X2 X3 X4 Xs X6 X? Xs X9 X1o xu X12 X13 X14 XIS X16 

4 -3 6 -1 0 0 0 0 0 0 0 0 0 0 -M -M 

Xs 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 100000 
X6 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 20000 
x, 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 40000 
Xs 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 60000 
X9 0 1 -10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
xw 0 0 0 6 -5 0 0 0 0 0 1 0 0 0 0 0 0 0 
xu 0 2 -8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
X12 0 0 0 2 -8 0 0 0 0 0 0 0 1 0 0 0 0 0 
X1s -M 1 1 0 0 0 0 0 I) 0 0 0 0 -1 0 1 0 50000 
X16 -M 0 0 1 1* 0 0 0 I) 0 0 0 0 0 -1 0 1 5000 

(Zj- q): -4 3 -6 1 0 0 0 I) 0 0 0 0 0 0 0 0 0 
-1 -1 -1 -1 0 0 0 I) 0 0 0 0 1 1 0 0 -55000 

Tableau 1 
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X1 X2 XJ X4 Xs X6 x, Xs X9 X10 xu X12 XIJ X14 X1s 

Xs 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 100 ()()() 
X6 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 15 ()()() 
x, 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 40 ()()() 
Xg 0 1 -1 0 0 0 0 1 0 0 0 0 0 1 0 55()()() 
X9 1 -10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

X10 0 0 11 0 0 0 0 0 0 1 0 0 0 -5 0 25 ()()() 
xu 2 -8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
X12 0 0 10 0 0 0 0 0 0 0 0 1 0 -8 0 40 ()()() 
X1s 1 1* 0 0 0 0 0 0 0 0 0 0 -1 0 1 50()()() 
X4 0 0 1 1 0 0 0 0 0 0 0 0 0 -1 0 5 ()()() 

-4 3 -7 0 0 0 0 0 0 0 0 0 0 1 0 -5000 
-1 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -50()()() 

Tableau 2 

X1 X2 XJ X4 xs X6 x, Xs X9 X1o xu ·'"12 XIJ X14 

xs 0 0 0 0 1 0 0 0 0 0 0 0 1 0 50()()() 
X6 0 0 0 0 0 1 0 0 0 0 0 0 0 1 15 ()()() 

X1 1 0 0 0 0 0 1 0 0 -0.0909 0 0 0 0.4545 37727.3 
Xs 0 0 0 0 0 0 1 1 0 0 0 0 1 1 45 ()()() 
X9 0 0 0 0 0 0 -11 0 1 1 0 0 -10 -5 85 ()()() 
X3 0 0 1 0 0 0 0 0 0 0.0909 0 0 0 -0.4545 2272.7 

xu 0 0 0 0 0 0 -10 0 0 0.9091 1 0 -8 -4.5455 22 727.2 
X12 0 0 0 0 0 0 0 0 0 -0.9091 0 1 0 -3.4545 17 272.7 
X2 0 1 0 0 0 0 -1 0 0 0.0909 0 0 -1 -0.4545 12272.7 
X4 0 0 0 1 0 0 0 0 0 -0.0909 0 0 0 -0.5455 2 727.3 

0 0 0 0 0 0 7 0 0 0 0 0 3 1 125 ()()() 

Tableau 5 

4.8 Demonstrate the validity of the simplex method by solving Problem 4.2 algebraically. 

The program in standard form is 

minimize: z = 80x 1 + 60x2 + Ox3 + Mx4 

subject to: 0.20x1 + 0.32x2 + X3 =0.25 

X1+ +x4= 1 (1) 

with: all variables nonnegative 

Applying the theory developed in Chapter 3 to this system, we have n = 4 (variables) and m = 2 
(constraint equations), so that an extreme point of the feasible region Y must have at least n - m = 2 
zero components. Since the minimum must occur at an extreme point, these are the only candidates we 
need consider. 

An initial extreme-point solution to system (1) is X1 = X2 = 0, X3 = 0.25, X4 = 1. We determine 
whether this solution can be improved by writing the objective function solely in terms of those variables 
currently set equal to zero, here x 1 and x2. (We are assured that the constraint equations can be solved 
for X3 and X4 in terms of X1 and X2 because our extreme-point solution is a basic feasible solu­
tion.) Solving the second constraint equation for X4 and substituting in the objective function, we obtain 

z = (80- M)x1 + (60- M)x2+ M (2) 

Compare system (1) with Tableau 0 of Problem 4.2, and note how (2) is given by the bottom row of the 
tableau. 
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In the current solution, X1 = x2 = 0 and, from (2), z = M. The objective function can be reduced 
substantially if either X1 or X2 is allowed to become positive; we arbitrarily select x 1• Now, the first 
constraint in system (1) limits X1 to no more than 0.25/0.20 = 1.25 units, if the remaining variables are to 
remain nonnegative; while the second constraint limits X1 to no more than 1 unit, for the same 
reason. Since both constraints must be satisfied, x1 can be no larger than 1 unit. Setting x1 = 1, which 
is tantamount to setting X2 = X4 = 0, we obtain from the constraint equations XJ = 0.05. These values 
constitute the new extreme-point (basic) solution to the program. 

The artificial variable X4 was introduced initially only to provide a first solution. Ultimately, this 
variable must be zero. Since we now have a solution to the program in which X4 = 0, we can omit this 
variable from further consideration and restrict ourselves to the program 

minimize: z = 80x1 + 60x2 + Ox3 

subject to: 0.20x1 + 0.32x2 + XJ= 0.25 

X1+ = I 

with: all variables nonnegative 

(3) 

(4) 

(5) 

of which an extreme-point solution- x1 = 1, X:t = 0, XJ = 0.05 -is known. Observe that this modified 
program has n = 3 variables and m = 2 constraint equations, so that extreme points must possess at 
least 3- 2 = 1 zero-valued variables. 

To determine whether the starting solution for the new program can be improved, we solve (5)-the 
equation that restricted x1-for x1 and substitute the result into (3) and (4). The program becomes 

minimize: z = Ox1- 20x2 + Ox3 + 80 

subject to: 0.12x2 + X3 = 0.05 

X2 = 1 

with: all variables nonnegative 

Compare this program with Tableau 2 of Problem 4.2. 

(6) 

(7) 

(8) 

In the current solution, x2 = 0, and it follows from (6) that z = 80. It is obvious from this 
equation, however, that z will be reduced if x2 is increased. Constraint (7) limits x2 to 0.05/0.12 = 
5/12, if the other variables are to remain nonnegative; while (8) limits X2 to 1. Since both constraints 
must be obeyed, X2 cannot be increased beyond 5/12. Setting x2 = 5/12, which forces X3 = 0, we find 
from (8) that X1 = 7/12. This is the new extreme-point solution to the program. 

To determine whether this solution can be improved, we solve (7)-the equation that restricted 
x2-for x2 and substitute the result in (6) and (8). The program becomes 

minimize: z = Ox1 + Ox2 + 166.7 X3 + 71.67 

subject to: X2 + 8.333xJ = 0.4167 

x1 - 8.333xJ = 0.5833 

with: all variables nonnegative 

(9) 

(10) 

(11) 

Equation (10) is just (7) divided through by 0.12. Compare the form of this program with Tableau 3 of 
Problem 4.2. 

In the current solution, XJ = 0, so it follows from (9) that z = 71.67. It also follows from (9) that 
no positive allocation to X3 will reduce z below this value. In fact, any such allocation will increase 
z. Thus, the current solution is an optimal one. 
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Supplementary Problems 

Use the simplex or two-phase method to solve the following problems. 

4.9 maximize: Z = X1 + X2 4.14 minimize: z = 14xi + 13x2 + 11xJ + 13x4 + 13xs + 12x6 

subject to: X1 + 5x2:5 5 subject to: X1 +x2+X3 = 1200 

2x1+ X2:54 X4 + Xs + X6 = 1000 

with: x1, X2 nonnegative X1 +x4 = 1000 

X2 +xs 700 

XJ +x6= 500 
4.10 maximize: z = 3xl +4x2 

with: all variables nonnegative 
subject to: 2x1+ X2S 6 

2x1 + 3x2s 9 4.15 Problem 2.8. 

with: x1, X2 nonnegative 

4.16 Problem 2.10. 

4.11 minimize: Z = X1 + 2x2 

subject to: XI+ 3x22= 11 
4.17 Problem 2.9. 

2x1+ X22= 9 
4.18 Problem 2.11. 

with: x1, X2 nonnegative 

4.19 Problem 2.13. 

4.12 maximize: z=-xl-x2 

subject to: X1 + 2x22= 5000 4.20 Problem 1.7, but with inventories of 80 000 bbl of 

5xl + 3x2 2:: 12 000 domestic oil and 20 000 bbl of foreign oil. 

with: x1, X2 nonnegative 
4.21 Problem 1.17. 

4.13 maximize: z,= 2x1 + 3x2 + 4x3 4.22 Problem 1.18. 

subject to: X1+ X2+ X3 :51 

X1+ x2+2x3 = 2 4.23 Problem 1.19. 

3xl +2x2+ X32=4 

with: all variables nonnegative 4.24 Problem 1.22. 



Chapter 5 

Linear Programming: 
Duality 

Every linear program in the variables Xt. x2, •.• , Xn has associated with it another linear program 
in the variables w., w2, ••• , Wm (where m is the number of constraints in the original program), 
known as its dual. The original program, called the primal, completely determines the form of its 
dual. 

SYMMETRIC DUALS 

The dual of a (primal) linear program in the (nonstandard) matrix form 

minimize: z = crx 

is the linear program 

subject to: AX~ B 

with: x~o 

maximize: z = BTW 

subject to: ATW:::: C 

with: w~o 

Conversely, the dual of program (5.2) is program (5.1). (See Problems 5.1 and 5.2.) 

(5.1) 

(5.2) 

Programs (5.1) and (5.2) are symmetrical in that both involve nonnegative variables and in­
equality constraints; they are known as the symmetric duals of each other. The dual variables 
w., w2, ••• , Wm are sometimes called shadow costs. 

DUAL SOLUTIONS 

Theorem 5.1 (Duality Theorem): If an optimal solution exists to either the primal or symmetric dual 
program, then the other program also has an optimal solution and the two objective 
functions have the same optimal value. 

In such situations, the optimal solution to the primal (dual) is found in the last row of the final 
simplex tableau for the dual (primal), in those columns associated with the slack or surplus variables 
(see Problem 5.3). Since the solutions to both programs are obtained by solving either one, it may 
be computationally advantageous to solve a program's dual rather than the program itself. (See 
Problem 5.4.) 

Theorem 5.2 (Complementary Slackness Principle): Given that a pair of symmetric duals have optimal 
solutions, then if the kth constraint of one system holds as an inequality-i.e., the 
associated slack or surplus variable is positive-the kth component of the optimal solution 
of its symmetric dual is zero. 

(See Problems 5.11 and 5.12.) 

44 
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UNSYMMETRIC DUALS 

For primal programs in standard matrix form, duals may be defined as follows: 

Primal Dual 

minimize: z =CTX maximize: z = BTW 

subject to: AX=B (5.3) subject to: A rw ~ C 
(5.4) 

with: X2:0 

maximize: z =CTX minimize: z = BTW 

subject to: AX=B (5.5) subject to: ATW 2: C 
(5.6) 

with: X2:0 

(See Problems 5.5 and 5.6.) Conversely, the duals of programs (5.4) and (5.6) are defined as 
programs (5.3) and (5.5), respectively. Since the dual of a program in standard form is not itself in 
standard form, these duals are unsymmetric. Their forms are consistent with and a direct con­
sequence of the definition of symmetric duals (see Problem 5.8). 

Theorem 5.1 is valid for unsymmetric duals too. However, the solution to an unsymmetric dual 
is not, in general, immediately apparent from the solution to the primal; the relationships are 

W*T = Cf A01 or W* = (A6)- 1C0 

or 

(5.7) 

(5.8) 

In (5. 7), C0 and Ao are made up of those elements of C and A, in either program (5.3) or (5.5), that 
correspond to the basic variables in X*; in (5.8), Bo and Ao are made up of those elements of Band 
A, in either program (5.4) or (5.6), that correspond to the basic variables in W*. (See Problem 5.7.) 

Solved Problems 

5.1 Determine the symmetric dual of the program 

minimize: z = 5x1 + 2x2 + x3 

subject to: 2x1 + 3x2 + x3 2: 20 

6x, + 8x2 + 5x3 2:30 

7xt+ x2 +3x32:40 

Xt + 2xz + 4x3 2: 50 

with: all variables nonnegative 

(1) 

This program has the form of (5.1). Its dual, of the form (5.2), is found by taking the opposite 
optimum, interchanging B and C, transposing A, and reversing the constraint inequalities: 

maximize: z = 20w1 + 30w2 + 40w3 + 50w4 

subject to: 2wt + 6w2 + 7w3 + W4 :s; 5 

3wt + 8w2+ WJ+2w4s2 

Wt + 5w2 + 3w3 + 4w4 :s; 1 

with: all variables nonnegative 

(2) 
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Note that the primal, program (1), contains three variables and four constraints, while its dual, program 
(2), contains four variables and three constraints. 

5.2 Determine the symmetric dual of the program 

maximize: z = 2x1 + x2 

subject to: Xt + 5x2 ~ 10 

Xt+3xz~ 6 

2Xt + 2xz~ 8 

with: all variables nonnegative 

(1) 

This program has the form (5.2), with x-variables replacing w-variables. Proceeding as in Problem 
5.1, we generate its dual, (5.1), with w-variables replacing x-variables: 

minimize: z = lOw,+ 6w2 + 8w3 

subject to: w. + w2 + 2w3 ~ 2 

5w, + 3w2+ 2wJ ~ 1 (2) 

with: all variables nonnegative 

5.3 Show that both the primal and dual programs in Problem 5.2 have the same optimal value for 
z, and that the solution of each is imbedded in the final simplex tableau of the other. 

Introducing slack variables XJ, X4, and xs, respectively, in the constraint inequalities of program (1) 
of Problem 5.2, and then applying the simplex method to the resulting program, we generate sequentially 
Tableaux 1 and 2. 

x, X2 XJ X4 xs slack variables 

2 1 0 0 0 Xt X2 XJ X4 xs 

XJ 0 1 5 1 0 0 10 XJ 0 4 1 0 -1/2 6 
X4 0 1 3 0 1 0 6 X4 0 2 0 1 -1/2 2 
xs 0 2* 2 0 0 1 8 Xt 1 1 0 0 1/2 4 

(Zj- Cj): -2 -1 0 0 0 0 0 0 0 8 

solution to the dual 

Tableau 1 Tableau 2 

The solution to the primal is obtained from Tableau 2 as x T = 4, x! = 0, with z * = 8. The solution to 
the dual program is found in the last row of this tableau, in those columns associated with the slack 
variables for the primal. Here, wT = 0, w! = 0, and wJ = 1. 

We can solve the dual directly by introducing surplus variables W4 and Ws, and artificial variables W6 

and w1, to program (2) of Problem 5.2, and then applying the two-phase method, which generates 
Tableaux 1', ... , 4'. 

Wt W2 WJ W4 ws W6 W7 
surplus variables 

10 6 8 0 0 M M Wt wz WJ W4 ws 

W6 M 1 1 2 -1 0 1 (I 2 ws -4 -5 0 -1 1 
W7 M 5* 3 2 0 -1 0 J 1 WJ 1/2 1/2 1 -1/2 0 

(Cj-Zj); 10 6 8 0 0 0 0 0 6 2 0 4 0 -8 
-6 -4 -4 1 1 0 0 -3 

solution to the primal 

Tableau 1' Tableau 4' 
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5.4 

The solution to the dual is read from Tableau 4' as wT = w~ = 0, w~ = 1, with z* = -(-8) = 8. The 
solution to the primal is found in the last row of this tableau, in those columns associated with the 
surplus variables. It is the same solution as found previously. 

minimize: z = Xt + Xz + X3 + X4 + Xs + X6 

subject to: Xt 

Xt + Xz 

Xz+ X3 2:14 

X3 + X4 2:20 

X4+ Xs 2:10 

Xs+ X62: 5 

with: all variables nonnegative 

To solve this program directly would require the introduction of 12 new variables, six surplus and six 
artificial, and the application of the two-phase method. A simpler approach is to consider the dual 
program: 

w, 0 
Wg 0 
W9 0 
Wio 0 
Wu 0 
WI2 0 

(Zj- Cj): 

WI 

W2 

W9 

W4 

WH 

W6 

maximize: z = 7wi + 20w2 + 14w3 + 20w4 +lOws+ 5w6 

subject to: WI+ W2 :S1 

WI 

7 

1 
0 
0 
0 
0 
1 

-7 

WI 

1 
0 
0 
0 
0 
0 

0 

WI 

W2+ W3 :S 1 

W3+W4 :S1 

W4+ws :S 1 
Ws+W6:S1 

+ W6:S 1 

with: all variables nonnegative 

W2 WJ W4 ws W6 w, Wg W9 ww 

20 14 20 10 5 0 0 0 0 

1 0 0 0 0 1 0 0 0 
1* 1 0 0 0 0 1 0 0 
0 1 1 0 0 0 0 1 0 
0 0 1 1 0 0 0 0 1 
0 0 0 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 

-20 -14 -20 -10 -5 0 0 0 0 

Tableau 1 

slack variables 

w2 WJ W4 ws W6 W7 Wg W9 Wio wu 

0 -1 0 0 0 1 -1 0 0 0 
1 1 0 0 0 0 1 0 0 0 
0 1 0 -1 0 0 0 1 -1 0 
0 0 1 1 0 0 0 0 1 0 
0 -1 0 1 0 -1 0 0 1 
0 0 0 -1 0 0 0 

0 4 0 10 0 2 18 0 20 0 

solution to the primal 

Tableau 5 

wu WI2 

0 0 

0 0 1 
0 0 1 
0 0 1 
0 0 1 
1 0 1 
0 1 1 

0 0 0 

WI2 

0 0 
0 1 
0 0 
0 1 

-1 0 

5 45 
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This system is put in standard form by introducing only six new variables, all slack. Doing so and then 
applying the simplex method, we successively generate Tableaux 1, ... , 5. Tableau 5 signals optimality 
for the dual program, so the optimal solution to the primal is found in the last row of this tableau, in 
those columns associated with the slack variablt:s. Specifically, xT = 2, x! = 18, x~ = 0, xl = 20, x~ = 
0, x~ = 5, with z* = 45. 

5.5 Determine the dual of the program 

maximize: z = Xt + 3xz- 2x3 

subject to: 4x 1 + 8x2 + 6x3 = 25 

7Xt + 5x2 + 9x3 = 30 

with: all variables nonnegative 

This program has the form (5.5); its unsymmetric dual is given by (5.6) as 

minimize: z = 25wi + 30w2 

subject to: 4wt + ?w2 2: 1 

8w1 + 5w22: 3 

6w1 + 9w22: -2 

5.6 Determine the dual of the program 

minimize: z = 3Xt + x 2 + Ox3 + Ox4 + Mx5 + Mx6 

subject to: x 1 + x 2 - x3 + x5 = 7 

2xt + 3xz - X4 + X6 = 8 

with: all variables nonnegative 

As this program has the form (5.3), its unsymmetric dual is given by (5.4) as 

maximize: z = 7wt + 8w2 

subject to: Wt + 2w2 s 3 

Wt + 3w2s 1 

-w1 sO 

W2:SO 

Wt sM 

W2:SM 

Because the third and fourth constraints are equivalent to Wt 2: 0 and w2 2: 0, and because the fifth 
and sixth constraints simply require the variables to be finite (a condition that is always presupposed), the 
dual program can be simplified to 

maximize: z = 7wt + 8w2 

subject to: w1 + 2w2 s 3 

Wt + 3w2s 1 

with: Wt and w2 nonnegative 

5.7 Verify (5.7) and (5.8) for the programs of Problem 5.5. 

The primal program can be solved by the two-phase method if artificial variables x4 and x 5, respectively, 
are first added to the left-hand sides of the constraint equations. Tableaux 1, ... , 4 result. 
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X! X2 X3 X4 xs 
3 -2 -M -M 

X4 -M 4 8 6 0 25 
xs -M 7 5 9* 0 30 

(ZJ- Cj): -1 -3 2 0 0 0 
-11 -13 -15 0 0 -55 

Tableau 1 

X! X2 X3 

X2 0 0.1668 1.528 
X! 0 1.167 3.193 

0 0 3.668 7.m 
Tableau 4 

The dual program was put into standard form in Problem 2.6 (with x's replacing w's). Applying 
the two-phase method to that program, we generate Tableaux 1', ... , 3'. It follows from Tableau 4 
that xT = 3.193, x~ = 1.528, x~ = 0, with z* = 7.777. It follows from Tableau 3' that 

wT = w~- wl = 0.4444 w~ = w!- w: = -0.1111 

with z* = -(-7.778) = 7.778. Note that the values of the objective for both the primal and the dual are 
identical except for roundoff error. 

WJ W4 ws W6 w, Wg W9 ww wu 
25 -25 30 -30 0 0 0 M M 

Wto M 4* -4 7 -7 -1 0 0 1 0 1 
wu M 8 -8 5 -5 0 -1 0 0 1 3 
W9 0 -6 6 -9 9 0 0 1 0 0 2 

(Cj- Zj): 25 -25 30 -30 0 0 0 0 0 0 
- 12 12 - 12 12 0 0 0 - 4 

Tableau 1' 

WJ W4 Ws W6 W7 Wg W9 

WJ 1 0 0 0.1389 -0.1944 0 0.4444 
W6 0 0 -1 1 0.2222 -0.1111 0 0.1111 
W9 0 0 0 0 -1.167 -0.1667 3.667 

0 0 0 0 3.195 1.528 0 -7.778 

Tableau 3' 

To verify (5. 7), we note that the basic variables in X* are Xt and x2; hence (5. 7) becomes 

*T _ [4 8]-l _ [-5/36 8/36] _ _ _ _ w - [1, 3] 7 5 - [1, 3] 7/36 --4/36 - [16/36, 4/36]- [0.4444, 0.1111] 

To verify (5.8), we note that the basic variables in W*, as given in Tableau 3', are W3, W6, and Wg; hence 
(5.8) becomes 

[ ]

-1 [ 4 -7 0 -5/36 
X*T = (25, -30, 0] 8 -5 0 = [25, -30, 0] -8/36 

-6 9 1 42/36 

= [115/36, 55/36, 0] = [3.194, 1.528, 0] 

7/36 OJ 
4/36 0 
6/36 1 
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5.8 Show that the form of the unsymmetric dual is uniquely determined by the form of the 
symmetric dual. 

Consider program (5.3), with an m x n matrix A. Since the equality constraint AX= 8 is equi­
valent to the two inequality constraints AX~ 8 and AX s B, and since this second inequality can be 
rewritten as -AX~ -8, program (5.3) is equivalent to 

minimize: z =CTX 

subject to: Ax~s 

with: x~o 

where A= [ A] B= [ _:] _-A 
Program (1) has the form (5.1); its symmetric dual is given by (5.2) (with U written instead of W) as 

maximize: z = BTU 

subject to: Aru s C 

with: u~o 

(1) 

(2) 

Partitioning U into two m-dimensional vectors, u, and Uz, and using the definitions of A and 8, we may 
rewrite (2) as 

maximize: z = (Br, -BT] [~:] = BT(U,- Uz) 

subject to: (AT, -AT] [~:]=AT(Ut-Uz):SC 

with: u,~O and Uz~O 

(3) 

Finally, defining W = U,- Uz, and noting that the difference of two nonnegative vectors is not itself 
restricted in sign, we put (3), which is the dual of program (5.3), into the form 

maximize: z = BTW 

subject to: ATW s C 

This last system is precisely program (5.4). 

(4) 

Repeating all. the above steps with the words "maximize" and "minimize" interchanged and with 
the inequalities reversed in the main constraints, we may also show that the dual of program (5.5) is 
program (5.6). 

5.9 Prove that if X is any feasible solution to program (5.1) and if W is any feasible solution to 
program (5.2), then crx ~ BTW. 

If X is a feasible solution to (5.1), then AX~ B. Premultiplying this inequality by the nonnegative 
vector wr, we obtain wr AX~ WrB, which is equivalent to 

WTAX~BTW (1) 

since WTB is a scalar. 
If W is a feasible solution of (5.2), then A rw s C, or wr A :S cr. Postmultiplying by the non­

negative vector X, we obtain 

(2) 

Together, (1) and (2) imply crx ~ BTW. 

5.10 Given that A in program (5.1) is m x n, let Xn+t, Xn+z, ••• , Xn+m be surplus variables introduced 
in the program to render the constraints equalities; and let Wm+t. Wm+z, ••• , Wm+n be slack 



CHAP. 5] LINEAR PROGRAMMING: DUALITY 51 

variables introduced in program (5.2) for the same reason. Let Zt and Zz be the values of the 
objective functions of programs (5.1) and (5.2), respectively. Show that 

n m 

~ XjWm+j + ~ W;Xn+i = Zt- Zz (1) 
j=l 1=1 

Program (5.1) takes the form 

minimize: z 1 = CtXt + · · · + CnXn + Oxn+l + 0Xn+2 + · · · + Oxn+m 

subject to: aux1 + a12X2 + · · · + atnXn- Xn+l 

-Xn+2 

- Xn+m = bm 

with: all variables nonnegative 

Multiplying the ith constraint equation of this program by w, (i = 1, 2, ... , m) and summing the results, 
we obtain 

Subtracting this equation from 

we get 

m n 

m n 

~ CjXj = Zt 
i-1 

~ CjXj- ~ ~ QijXjWi + ~ Xn+iW; = Z1- ~ b1W; 
j=l i•l j=l i•l ;:a:l 

which can be rewritten as 

Program (5.2) takes the form 

maximize: Z2= btWI + ... + bmWm +Owm+l + Owm+2+ ... +Owm+n 

subject to: auWt + a21W2+ • • • + amtWm + Wm+l = Ct 

+ Wm+2 

+ Wm+n = Cn 

with: all variables nonnegative 

Solving for the slack variables Wm+i (j = 1, 2, ... , n) in this program, we find 

Wm+i = Cj- ~ aljWi 
i=l 

Substituting this result into (2), and noting that 

we obtain (1 ). 

5.11 Prove the complementary slackness principle (Theorem 5.2). 

(2) 

For optimal solutions X* and W* of programs (5.1) and (5.2), respectively, relation (1) of Problem 
5.10 becomes 

~ x~w!+i + ~ wh:+, = 0 
j•l i•l 
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the right-hand side being 0 because of Theorem 5.1. As each variable in the above equation is non­
negative, the individual summands must vanish; that is, 

X~W!+i = 0 (j = 1, 2, ... , n) and w':'x:+i=O (i=1,2, ... ,m) 

On the left is the product of the jth component of X* with the jth slack variable of program (5.2); if 
either term is positive, the other must be zero. On the right is the product of the ith component of W* 
with the ith surplus variable of program (5.1); if either term is positive, the other must be zero. 

5.12 Use the results of Problem 5.3 to verify the complementary slackness principle. 

Considering the optimal tableau for the primal program (Tableau 2), we find that the first two slack 
variables, X3 and X4, are positive (x3 = 6 and X4 = 2); hence the first two dual variables, Wi and w2, 
should be zero. They are. We also find for the third dual variable, W3 = 1. Since it is positive, the 
third slack variable in the primal, xs, should be zero too. It is. 

Next consider the optimal tableau for the dual program (Tableau 4'). The second surplus variable, 
Ws, is positive; hence the second primal variable, x2, should be zero. It is. In addition, the first primal 
variable, x~, is positive; so the first surplus vanable in the dual system, W4, should be zero too. It is. 

Supplementary Problems 

In Problems 5.13 through 5.17, determine the duals of the given programs. 

5.13 

5.14 

5.15 

5.16 

minimize: z = 12xi + 26x2 + 80x3 

subject to: 2xi + 6x2 + 5x3 ~ 4 

4xi + 2x2+ X3~ 10 

Xi+ X2+ 2X3~ 6 

with: all variables nonnegative 

minimize: z = 3xi + 2x2 + X3 + 2x4 + 3xs 

subject to: 2xt + 5x2 

4x2- 2x3 + 2x4 + 3xs ~ 5 

Xi- 6x2 + 3x3 + 7x4 + 5xs s; 7 

with: all variables nonnegative 

maximize: z = 6x1- X2 + 3x3 

subject to: 7xt + llx2 + 3x3 s; 25 

2xt+ 8x2 + 6x3 s; 30 

6x1+ X2 + 7x3 s; 35 

with: all variables nonnegative 

maximize: z = l0x1 + 15x2 + 20x3 + 25x4 

subject to: Bxi + 6x2- X3 + X4 ~ 16 

3xi + 2x3- X4 = 20 

with: all variables nonnegative 
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minimize: z = Xt + Zx2 + X3 

subject to: X2+ X3 = 1 

3xi + X2 + 3x3 = 4 

with: all variables nonnegative 
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5.18 Show that the program given in Problem 5.13 has the same optimal value as its dual by solving both 
programs directly. 

5.19 Find the optimal solution to the program given in Problem 5.14 by solving its dual. 

5.20 Determine the symmetric dual of the program given in Problem 4.3. Solve the dual directly and thereby 
verify that if either a primal or its symmetric dual has feasible solutions but no optimum, then the other has 
no feasible solution. 

5.21 By finding the unsymmetric dual of the program 

minimize: z = -Xi - X2 

subject to: Xi - x2 = 5 

Xi-X2= -5 

with: all variables nonnegative 

show that it is possible for both a primal and its dual to have no feasible solutions. 

5.22 Use the results of Problem 5.4 to verify the complementary slackness principle. 

5.23 Verify (5.7) and (5.8) for the program given in Problem 5.17. 

5.24 Prove that if Xo and Wo are feasible solutions of programs (5.1) and (5.2), respectively, such that crXo = 
BTWo, then Xo and Wo are optimal solutions to their respective programs. 



Chapter 6 
Integer Programming: 
Branch-and-Bound Algorithm 

FIRST APPROXIMATION 

An integer program is a linear program with the added requirement that all variables be integers 
(see Chapter 1). Therefore, a first approximation to the solution of any integer program may be 
obtained by ignoring the integer requirement and solving the resulting linear program by one of the 
techniques already presented. If the optimal solution to the linear program happens to be integral, 
then this solution is also the optimal solution to the original integer program (see Problem 
6.3). Otherwise-and this is the usual situation-one may round the components of the first 
approximation to the nearest feasible integers and obtain a second approximation. This procedure is 
often carried out, especially when the first approximation involves large numbers, but it can be 
inaccurate when the numbers are small (see Problem 6.5). 

BRANCHING 

If the first approximation contains a variable that is not integral, say x 1, then it < x 1 < i 2, where 
it and i 2 are consecutive, nonnegative integers. Two new integer programs are then created by 
augmenting the original integer program with either the constraint xi ~ it or the constraint xi ~ 

i2• This process, called branching, has the effect of shrinking the feasible region in a way that 
eliminates from further consideration the current nonintegral solution for xi but still preserves all 
possible integral solutions to the original problem. (See Problem 6.8.) 

Example 6.1 As a first approximation to the integer program 

maximize: z = 10x1 + X2 

subject to: 2xt + 5x2 s; 11 (6.1) 

with: Xt and X2 nonnegative and integral 

we consider the associated linear program obtained by deleting the integer requirement. By graphing, the 
solution is readily found to be xT = 5.5, x~ = 0, with z* =55. Since 5 < xT < 6, branching creates the two 
new integer programs 

maximize: z = 10x1 + X2 

subject to: 2xt + 5x2 s; 11 

X! ~; 5 

with: Xt and X2 nonnegative and integral 
/ 

maximize: z = lOx1 + X2 

subject to: 2xt + 5x2 :5 11 
2: 6 

with: Xt and X2 nonnegative and integral 

(6.2) 

(6.3) 

For the two integer programs created by the branching process, first approximations are obtained 
by again ignoring the integer requirements and solving the resulting linear programs. If either first 

54 
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approximation is still nonintegral, then the integer program which gave rise to that first ap­
proximation becomes a candidate for further branching. 

Example 6.2 Using graphical methods, we find that program (6.2) has the first approximation xT = 5, x~ = 

0.2, with z* = 50.2, while program (6.3) has no feasible solution. Thus, program (6.2) is a candidate for 
further branching. Since 0 < x ~ < 1, we augment (6.2) with either X2 s; 0 or x2 ~ 1, and obtain the two new 
programs 

(in which X2 = 0 is forced) and 

maximize: z = 10x1 + x2 

subject to: 2x1 + 5x2 s; 11 

Xi 

with: X1 and X2 nonnegative and integral 

maximize: z = l0x1 + x2 

subject to: 2x1 + 5x2 s; 11 

Xi s; 5 

X2~ 1 

with: x1 and x2 nonnegative and integral 

(6.4) 

(6.5) 

With the integer requirements ignored, the solution to program (6.4) is xT = 5, x~ = 0, with z* =50, while the 
solution to program (6.5) is xf = 3, x~ = 1, with z* = 31. Since both these first approximations are integral, 
no further branching is required. 

BOUNDING 

Assume that the objective function is to be maximized. Branching continues until an integral 
first approximation (which is thus an integral solution) is obtained. The value of the objective for 
this first integral solution becomes a lower bound for the problem, and all programs whose first 
approximations, integral or not, yield values of the objective function smaller than the lower bound 
are discarded. 

Example 6.3 Program (6.4) possesses an integral solution with z* =50; hence 50 becomes a lower bound for 
the problem. Program (6.5) has a solution with z* = 31. Since 31 is less than the lower bound 50, program 
(6.5) is eliminated from further consideration, and would have been so eliminated even if its first approximation 
had been nonintegral. 

Branching continues from those programs having nonintegral first approximations that give 
values of the objective function greater than the lower bound. If, in the process, a new integral 
solution is uncovered having a value of the objective function greater than the current lower bound, 
then this value of the objective function becomes the new lower bound. The program that yielded 
the old lower bound is eliminated, as are all programs whose first approximations give values of the 
objective function smaller than the new lower bound. The branching process continues until there 
are no programs with nonintegral first approximations remaining under consideration. At this point, 
the current lower-bound solution is the optimal solution to the original integer program. 

If the objective function is to be minimized, the procedure remains the same, except that upper 
bounds are used. Thus, the value of the first integral solution becomes an upper bound for the 
problem, and programs are eliminated when their first approximate z-values are greater than the 
current upper bound. 
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COMPUTATIONAL CONSIDERATIONS 

One always branches from that program which appears most nearly optimal. When there are a 
number of candidates for further branching, one chooses that having the largest z-value, if the 
objective function is to be maximized, or that having the smallest z-value, if the objective function is 
to be minimized. 

Additional constraints are added one at a time. If a first approximation involves more than one 
nonintegral variable, the new constraints are imposed on that variable which is furthest from being an 
integer; i.e., that variable whose fractional part is closest to 0.5. In case of a tie, the solver 
arbitrarily chooses one of the variables. 

Finally, it is possible for an integer program or an associated linear program to have more than 
one optimal solution. In both cases, we adhere to the convention adopted in Chapter 1, arbitrarily 
designating one of the solutions as the optimal one and disregarding the rest. 

Solved Problems 

6.1 Draw a schematic diagram (tree) depicting the results of Examples 6.1 through 6.3. 

6.2 

z* =50 

Fig. 6-1 

See Fig. 6-1. The original integer program, here (6.1), is designated by a circled 1, and all other 
programs formed through branching are designated in the order of their creation by circled successive 
integers. Thus, programs (6.2) through (6.5) are designated by circled 2 through 5, respectively. The 
first approximate solution to each program is written by the circle designating the program. Each circle 
(program) is then connected by a line to that circle (program) which generated it via the branching 
process. The new constraint that defined the branch is written above the line. Finally, a large cross is 
drawn through a circle if the corresponding program has been eliminated from further consideration. 
Hence, branch 3 was eliminated because it was not feasible; branch 5 was eliminated by bounding in 
Example 6.3. Since there are no non integral branches left to consider, the schematic diagram indicates that 
program 1 is solved with xT = 5, x~ = 0, and z* =50. 

maximize: z = 3xt + 4x2 

subject to: 2x1 + x2 ~ 6 

2Xt + 3X2 ~9 

with: x~, Xz nonnegative and integral 
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Neglecting the integer requirement, we obtain xt = 2.25, x~ = 1.5, with z* = 12.75, as the solution 
to the associated linear program. Since x ~ is further from an integral value than x T, we use it to 
generate the branches X2 s 1 and xz ~ 2. 

Progr11111 2 Program .3 

maximize: z = 3xi +4x2 maximize: z = 3xi +4x2 

subject to: 2xi+ xz:S6 subject to: 2xi+ X2:S 6 
2xi + 3xz:S 9 2Xi + 3X2:S 9 

X2 :S 1 X2~2 

with: x~, X2 nonnegative with: Xi, X2 nonnegative 
and integral and integral 

The first approximation to Program 2 is xT = 2.5, x~ = 1, with z* = 11.5; the first approximation 
to Program 3 is xT = 1.5, x~ = 2, with z* = 12.5. These results are shown in Fig. 6-2. Since Programs 
2 and 3 both have nonintegral first approximations, we could branch from either one; we choose 
Program 3 because it has the larger (more nearly optimal) value of the objective function. Here 1 < 
x f < 2, so the new programs are 

Progr11111 4 

maximize: z = 3xi + 4x2 

subject to: 2xi + x2 s 6 

2xi + 3x2s9 

X2~2 

s1 

with: Xi, X2 nonnegative 
and integral 

Progr11111 5 

maximize: z = 3xi + 4x2 

subject to: 2x1 + x2 s 6 

2xi + 3x2 s 9 

X2~2 

~2 

with: x~, X2 nonnegative 
and integral 

There is no solution to Program 5 (it is infeasible), while the solution to Program 4 with the integer 
constraints ignored is xt = 1, x~ = 7/3, with z* = 12.33. See Fig. 6-2. The branching can continue 
from either Program 2 or Program 4; we choose Program 4 since it has the greater z-value. 

z*=ll.S 

F1g. 6-2 
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Here 2 < x ~ < 3, so the new programs are 

Program 6 

maximize: z = 3xi + 4x2 

subject to: 2xi + X2 s 6 

2xi+3x2s9 

X2 2:: 2 

s1 

with: Xi, x2 nonnegative 
and integral 

Program 7 

maximize: z = 3xi + 4x2 

subject to: 2xi + x2 s 6 

2xi + 3x2 s 9 

X2 2::2 

with: Xi, X2 nonnegative 
and integral 

(PART I 

The solution to Program 6 with the integer constraints ignored is xT = 1, x~ = 2, with z* = 
11. Since this is an integral solution, z = 11 becomes a lower bound for the problem; any program 
yielding a z-value smaller than 11 will henceforth be eliminated. The first approximation to Problem 7 
is xT = 0, x~ = 3, with z* = 12. Since this is an integral solution with a z-value greater than the 
current lower bound, z = 12 becomes the new lower bound, and the program that generated the old 
lower bound, Program 6, is eliminated from further consideration, as is Program 2. Figure 6-2 now 
shows no branches left to consider other than the one corresponding to the current lower bound. Con­
sequently, this branch gives the optimal solution to Program 1: xT = 0, x~ = 3, with z* = 12. 

6.3 Solve Problem 1.9. 

Dropping the integer requirements from program (1) of Problem 1.9, we solve the associated linear 
program first, to find (see Problem 5.4): xf o= 2, X~= 18, x! = 0, x: = 20, X~= 0, X~= 5, with z* = 
45. This is the first approximation. Since it is integral, however, it is also the optimal solution to the 
original integer program. 

6.4 Solve Problem 1.6. 

Ignoring the integer requirements in program (4) of Problem 1.6, we obtain xT = x! = 0, x! = 
1666.67, x: = 5000, with z* = 55000, as the first approximation. Since x! is not integral, we branch to 
two new programs, and solve each with the integer constraints ignored. The results are indicated in Fig. 
6-3. Program 3 possesses an integral solution with a z-value greater than the z-value of Program 
2. Consequently, we eliminate Program 2 and accept the solution to Program 3 as the optimal 
one: x T = 1, x! = 0, x ~ = 1667, x: = 4999, with z * = $55 000. 

z* = 54999.6 

(1. 0, 1667, 4999) 

Fig. 6-3 

6.5 Discuss the errors involved in rounding the first approximations to the original programs in 
Problems 6.2 and 6.4 to integers and then taking these answers as the optimal ones. 
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6.6 

The first approximation in Problem 6.2 was xi= 2.25, x! = 1.5. We wish to round to the closest 
integer point in the feasible region. Now, of the four integer points surrounding the first approximation, 
only one, (2, 1), is found to lie in the feasible region. Thus we take xi= 2, x! = 1, with a corres­
ponding z * = 10, as the proposed optimal solution. The true optimal solution was found as z * = 12; 
thus the rounded solution deviates from the true solution by more than 16 percent. 

The first approximation in Problem 6.4 was x' = x~ = 0, x~ = 1666.67, x~ = 5000. Rounding x~ 
down, to remain feasible, we obtain xT = x~ = 0, x! = 1666, x: = 5000 as the estimated coordinates of 
the optimal solution. The corresponding z-value, $54 996, deviates from the true solution, z * = 
$55 000, by less than 0.008 percent. 

minimize: z = x1 + x2 

subject to: 2x1 + 2x2 ~ 5 

12x. + 5x2 ~ 30 

with: x1 and x2 nonnegative and integral 

A first approximation to this program is xt = 2.5, x~ = 0, with z* = 2.5. Rounding x! up, thereby 
remaining feasible, we have x t = 3, x ~ = 0, with z * = 3, as an estimate of the optimal solution to the 
original program. Observe, however, that for integral values of the variables, the objective function 
must itself be integral. The z -value for the first approximation, z * = 2.5, provides a lower bound for 
the optimal objective; consequently, the optimal objective cannot be smaller than 3. Since we have an 
estimate which attains the value 3, the estimate must be optimal; i.e., x T = 3, x ~ = 0, with z * = 3. 

6.7 Solve the knapsack problem formulated in Problem 1.8. 

The simplex method could be used to find the first approximation for program (3) of Problem 1.8. A 
more efficient procedure is the following: 

The critical factor in determining whether an item is taken is not its weight or value per se but the 
ratio of the two, its value per pound. We denote this factor as desirability, adjoin it to the data, and 
construct Table 6-1, where the items are listed in order of decreasing desirability. To obtain the optimal 
solution to the knapsack problem with the integer constraints ignored, we simply take as much of each 
item as possible (without exceeding the 60-lb weight limit), beginning with the most desirable. It follows 
from Table 6-1 that the first approximation consists in all of item 2 (the most desirable one), all of item 5 
(the next most desirable item), and 30 lb of item 3: xi= 0, x~ = 1, x! = 30/35, x: = 0, x~ = 1, 
with z* = 135. 

Table 6-1 

Item Weight,Ib Value Desirability, 
value/lb 

2 23 60 2.61 
5 7 15 2.14 
3 35 70 2.00 
1 52 100 1.92 
4 15 15 1.00 

Since this first approximation is nonintegral, we branch by augmenting the original constraints with 
either X3 s 0 or X3 2:: 1. Before doing so, however, we note that since x3 is required to be nonnegative, 
the constraint X3 :S 0 can be tightened to X3 = 0; and since at most one of an item will be taken, the 
constraint X3 2:: 1 can be tightened to X3 = 1. This is indicated in the tree diagram, Fig. 6-4. 

Dropping the integer requirements, we determine the optimal solutions to both Programs 2 and 3 in 
Fig. 6-4, using Table 6-1 to find the best mix consistent with the constraints. For Program 2, we ob­
tain xi= 30/52, x~ = 1, x~ = 0, x: = 0, x~ = 1, with z* = 132.69; and for Program 3, xi= 0, x~ = 1, 
x! = 1, x: = 0, x~ = 2/7, with z* = 134.28. 

Continuing the branch-and-bound process, we complete Fig. 6-4. The first integral solution is 
obtained in Program 8, with z * = 90. A second integral solution is obtained in Program 10, with z * = 
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z• = 90 

Fig. 6-4 

130. Since this second z-value is larger than the first, we eliminate Program 8, as well as Programs 9 
and 11. Program 5, however, possesses a z-value greater than the current lower bound, so that we must 
still branch from it. The resulting Program 12 has a z-value smaller than 130, while Program 13 is 
infeasible; hence they too are eliminated. We remain with only Program 10; therefore, its solution­
take only items 2 and 3, for a total value of 130-is the optimal solution. 

Much of the branch-and-bound process might have been avoided. We know in advance that 
either X3 = 0 or X3 = 1 in the optimal solution. If XJ = 0, then Program 2 coincides with the original 
program, and the z-value 132.69 obtained when the integer requirements are dropped (thereby ex­
panding the feasible region) must be greater than, or at least equal to, the true optimum. Similarly, 
if X3 = 1, we see from Program 3 that the true optimum cannot exceed 134.28. Whichever the case, we 
are assured that the true optimum is less than 135. But, for integral values of the variables, z is in­
tegral; in fact, it is a multiple of 5, since the values of the items are multiples of 5. Therefore, the true 
optimum is at most 130. Now, rounding the first approximate solution to Program 3 gives xT = 0, x~ = 
1, x ~ == 1, x: = 0, x ~ = 0, with z * = 130. Consequently, this solution is optimal. 

6.8 Discuss the geometrical significance of making the first branch in Problem 6.2. 

The feasible region for Problem 6.2 with the integer requirements ignored is the shaded region in 
Fig. 6-5(a ); the feasible region for Problem 6.2 as given is the set of all integer points (marked with 
crosses) belonging to the shaded region. The first approximation is the circled extreme point. 

As a result of branching, the feasible region for Program 2, with the integer constraints ignored, is 
Region I in Fig. 6-5(b ), whereas Region II in the same figure represents the feasible region for Program 3 
with the integer requirements neglected. Observe that Regions I and II together contain all the feasible 
integer points of Fig. 6-5(a ), and only those integer points. Hence, if the original integer program has 
an optimal solution (as it does, in this case), that solution will be optimal for one of the two new integer 

't 
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6.9 

6.10 

Xz 

(a) (b) 

Fig. 6-5 

programs. Conversely, if the two new integer programs have optimal solutions, one of these solutions (the 
one with the larger z-value, in the case of a maximization problem) will be optimal for the original integer 
program. The validity of the bounding technique follows from the parenthetical remark just made. 

Supplementary Problems 

Solve the following problems by use of the branch-and-bound algorithm. 

maximize: z = Xt + 2xz + X3 

subject to: 2xt + 3xz + 3x3 s 11 

with: all variables nonnegative and integral 

maximize: z = Xt + 2xz + 3x3 + X4 

subject to: 3Xt + 2xz + X3 + 4x4 s 10 

5x, + 3xz + 2xJ + 5x4 s 5 

with: all variables nonnegative and integral 
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6.11 

6.12 

6.13 Problem 1.20. 

MATHEMATICAL PROGRAMMING 

maximize: z = 2x, + 10x2 + X3 

subject to: 5x, + 2x2 + X3 s 15 

2Xt + X2 + 7X3 S 20 

Xt + 3x2+ 2x3S 25 

with: all variables nonnegative and integral 

minimize: z = lOx,+ 2x2 + llxJ 

subject to: 2x, + 1x2 + X3 = 4 

5x,+8x2-2x3= 17 

with: all variables nonnegative and integral 

[PART I 

6.14 Solve Problem 6.7 by applying the branch-and·bound algorithm directly to program (3) of Problem 1.8 
and compare this procedure with the approach taken in Problem 6.7. 



Chapter 7 
Integer Programming; 
Cut Algorithms 

At each stage of branching in the branch-and-bound algorithm the current feasible region (for the 
current program with integer restrictions ignored) is cut into two smaller regions (one of them may 
be empty) by the imposition of two new constraints derived from the first approximation to the 
current program. This splitting is such that the optimal solution to the current program must 
show up as the optimal solution to one of the two new programs (Problem 6.8). The cut algorithms of 
the present chapter operate essentially in like fashion, the only difference being that a single new 
constraint is added at each stage, whereby the feasible region is diminished without being split. 

THE GOMORY ALGORITHM 

The new constraints are determined by the following three-step procedure. (See Problem 7.5.) 

STEP 1 In the current final simplex tableau, select one (any one) of the nonintegral variables and, 
without assigning zero values to the nonbasic variables, consider the constraint equation 
represented by the row of the selected variable. 

Example 7.1 The simplex tableau 

X3 
X2 

-l/2 
1/2 

4 

X2 

0 
1 

0 

xs 

-7/3 1/2 
0 -1 1/4 

0 3/4 

11/2 
1 

25/2 

gives the optimal solution (i.e., the current first approximation) as x~ = 11/2, x~ = 1, with each of the nonbasic 
variables xt, x:, and x~ set equal to zero. The noninteger assignment for x~ came from the first row of the 
tableau, which represents the constraint 

(7.1) 

STEP 2 Rewrite each fractional coefficient and constant in the constraint equation obtained from 
Step 1 as the sum of an integer and a positive fraction between 0 and 1. Then rewrite the 
equation so that the left-hand side contains only terms with fractional coefficients (and a 
fractional constant), while the right-hand side contains only terms with integral coefficients 
(and an integral constant). 

Example 7.2 Equation (7.1) becomes 

(-1 + !)xt + X3 + (-3 + ~)x4 + (0 + ~)xs = 5 + ~ 

or 

(7.2) 

STEP 3 Require the left-hand side of the rewritten equation to be nonnegative. The resulting 
inequality is the new constraint. 

63 
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Example 7.3 From (7.2), 

or 

is the new constraint. 

COMPUTATIONAL CONSIDERATIONS 

Computing time is saved by appending the new constraint inequality obtained from Step 3 to the 
constraint equations described in the current final simplex tableau rather than to the algebraically 
equivalent constraints given in the original program. (See Problem 7.1.) 

The Gomory cut algorithm may not converge; that is, an integral solution may not be obtained 
regardless of the number of iterations. Generally, however, if the algorithm does converge, it 
converges reasonably quickly. For this reason, an upper limit on the number of iterations to be 
attempted is often established before the computation is initiated. If the integral solution is not 
obtained within this bound, the algorithm is abandoned. 

There are no theoretical reasons for choosing between the Gomory and branch-and-bound 
algorithms. The branch-and-bound algorithm is the newer of the two procedures, and appears to be 
favored slightly among practitioners. 

7.1 

Solved Problems 

maximize: z = 2x1 + Xz 

subject to: 2x1 + 5x2 :S 17 

3xl + 2xz ::5 10 

with: x 1 and x2 nonnegative and integral 

(1) 

Ignoring the integer requirements and applying the simplex method to the resulting linear program, 
we obtain Tableau 1 as the optimal tableau after one iteration. 

X! X2 XJ X4 X! X2 XJ X4 Xs 

XJ 0 11/3 1 -2/3 31/3 XJ 0 0 1 -5/2 11/6 17/2 
X! 2/3 0 1/3 10/3 X! 1 0 0 0 1/3 3 

X2 0 0 1/2 -1/2 1/2 
0 1/3 0 2/3 20/3 

0 0 0 1/2 1/6 13/2 
Tableau 1 

Tableau 2 

The first approximation to program (1), therefore, is xt = 10/3, xJ = 31/3, x~ = x: = 0. Both xt and x! 
are nonintegral. Arbitrarily selecting x T, we consider the constraint represented by the second row of 
Tableau 1, the row defining xt; namely, 

Writing each fraction as the sum of an integer and a fraction between 0 and 1, we have 

or 

Requiring the left-hand side of this equation to be nonnegative, we obtain 

or 

as the new constraint. Rewriting the constraints of the original program (1) in the forms suggested by 
Tableau 1 and adding the new constraint, we generate the new program 
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maximize: z = 2xt + xz + Ox3 + Ox4 

subject to: lfxz + X3- h4 = ¥ 
Xt + hz + h4 = .!p (2) 

2xz + X42: 1 

with: all variables nonnegative and integral 

A surplus variable, Xs, and an artificial variable, X6, are introduced into the inequality constraint of (2), 
and then the two-phase method is applied, with x~, X3, and X6 as the initial set of basic variables. The 
optimal Tableau 2 is obtained after only one iteration. The first approximation to program (2) is 
thus xt = 3, x~ = 1/2, x! = 17/2, x: = x! = 0. Choosing x~ to generate the new constraint, we obtain 
from the third row of Tableau 2 

or 

This, combined with the constraints of program (2) in the forms suggested by Tableau 2, gives the new 
integer program 

maximize: z = 2xt + xz + Ox3 + Ox4 + Oxs 

subject to: X3- h4 + .!ixs = ¥ 
+ hs= 3 (3) 

Xz + !x4- !xs = ! 

with: all variables nonnegative and integral 

Ignoring the integer constraint and applying the two-phase method to program (3), with x~, x2, x3 , and X7 

(artificial) as the initial basic set, we obtain the optimal Tableau 3. 

XJ X2 XJ X4 xs X6 

XJ 0 0 1 -13/3 0 11/6 20/3 
X! 1 0 0 -1/3 0 1/3 8/3 
Xz 0 1 0 1 0 -1/2 1 
Xs 0 0 0 1 1 -1 1 

0 0 0 1/3 0 1/6 19/3 

Tableau 3 

A new iteration of the process is started from X r = 8/3 in Tableau 3. This results in a program 
whose solution is integral, with x t = 3, x ~ = 0, and z * = 6. This solution is then the optimal solution 
to integer program (1). 

7.2 Discuss the geometrical significance of the first added constraint in Problem 7.1. 

Initially, the feasible region consists of all points in the first quadrant having integral coordinates 
that satisfy 

and 

These are the points marked by crosses in Fig. 7-1(a). 
The constraint added to the original program (1) was 2xz + x4 2: 1; it led to program (2). Solving 

the second constraint equation of program (2) for X4 and substituting the result into the new constraint, 
we have 

or 

The effect of imposing Xt :s 3 is indicated in Fig. 7-1(b ): a small piece containing the current first 
approximation is sliced off the feasible region. No integer point, however, is lost. 
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7.3 Solve Problem 1.12. 

The first approximation to this integer program (see Problem 4.14 with the variables relabeled) 
is xh=700, xh=SOO, x~~=1000, xt1=x~2=xh=O, with z*=27600f. Since this first approx­
imation is integral, it is also the optimal solution to the integer program. Under this optimal schedule, 
700 boxes will be shipped from factory 1 to retailer 2, 500 boxes from factory 1 to retailer 3, and 1000 boxes 
from factory 2 to retailer 1. The total shipping cost is $276. 

7.4 Solve Problem 1.5. 

Program (4) of Problem l.S, brought into standard form, is 

minimize: z = 20x 1 + 22x2 + 18x 3 + Ox4 + Oxs + Ox6 + Ox1 + Ox8 + Mx9 + Mx 10 

subject to: 4xl + 6x2 + X3- X4 

- Xs 

+xs 

with: all variables nonnegative and integral 

=54 

+xw=6S 

7 

7 

7 

(1) 

Ignoring the integer restrictions and solving this program by the two-phase method, we obtain Tableau 1 
after three iterations. The first approximation to program (1) is thus xf = 1.7S, X~= 7, X~= S, with 
z* = 279. 

X! X2 XJ X4 Xs X6 X7 Xs 

X! 1 0 0 -0.3 0.05 0 -1.6 0 1.75 
XJ 0 0 1 0 . .2 -0.2 0 0.4 0 5 
X6 0 0 0 0.3 -0.05 1 1.6 0 5.25 
X2 0 1 0 0 0 0 1 0 7 
Xs 0 0 0 -0.2 0.2 0 -0.4 1 2 

0 0 0 2.4 2.6 0 2.8 0 -279 

Tableau 1 

Now, this first approximation may be rounded to the feasible integral solution X1 = 2, X2 = 7, 
XJ = S, with z = 284. It follows that the desired minimum cannot exceed 284. On the other hand, 
referring to the original program (4) of Problem l.S, we see that for integral values of the variables z 
is an even integer; hence, in view of the lower bound z* = 279 provided by the first approximation, 
the minimal z cannot be less than 280. Therefore, the minimal z can only be 280, 282, or 284, and we are 
guaranteed that the error committed in taking (2, 7, Sf as the optimal solution is at worst 

284-280 = 1430!. 
280 . 0 

(Starting from Tableau 1, one finds after six iterations of the Gomory algorithm that (2, 7, Sf is in 
fact the optimal solution.) 

7.5 Develop the Gomory cut algorithm. 

Consider the optimal tableau that results from applying the simplex method to an integer program 
with the integer requirements ignored, and assume that one of the basic variables, Xb, is nonin-
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X1= 3 

(a) (b) 

Fig. 7·1 

tegral. The constraint equation corresponding to the tableau row that determined Xb must have the 

form 

(1) 

where the sum is over all nonbasic variables. The y·terms are the coefficients and the constant term 

appearing in the tableau row determining Xb. Since Xb is obtained from (1) by setting the non basic 

variables equal to zero, it follows that yo is also nonintegral. 
Write each y·term in (1) as the sum of an integer and a nonnegative fraction less than 1: 

and Yo= io+ fo 

Some of the /i may be zero, but /o is guaranteed to be positive. Equation (1) becomes 

or (2) 

If each x·variable is required to be integral, then the left-hand side of (2) is integral, which forces 

the right· hand side also to be integral. But, since each /i and xi is nonnegative, so too is ~ fixi. The 

right-hand side of (2) then is an integer which is smaller than a positive fraction less than 1; that is, a 

nonpositive integer. 

or 

This is the new constraint in the Gomory algorithm. 

7.6 Develop another cut algorithm. 

Consider (1) of Problem 7.5. If each nonbasic variable Xi is zero, then Xb =yo is nonintegral. If 
Xb is to become integer-valued, then at least one of the nonbasic xi must be made different from 

zero. Since all variables are required to be nonnegative and integral, it follows that at least one 

nonbasic variable must be made greater than or equal to 1. This in tum implies that the sum of all the 

nonbasic variables must be made greater than or equal to 1. If this condition is used as the new 

constraint to be adjoined to the original integer program, we have the cut algorithm first suggested by 

Danzig. 
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7.7 Use the cut algorithm developed in Problem 7.6 to solve 

maximize: z = 3x:. + 4x2 

subject to: 2x1 + xz :o;; 6 

2x1 + 3xz :o;; 9 

with: x 1 and x2 nonnegative and integral 

Introducing slack variables X3 and X4 and then solving the resulting program, with the integer 
requirements ignored, by the simplex method, we obtain Tableau 1. 

X! X2 XJ X4 

X! 1 0 0.75 -0.25 2.25 
X2 0 -0.5 0.5 1.5 

0 0 0.25 1.25 12.75 

Tableau 1 

The first approximation is, therefore, x! = 2.25, x ~ = 1.5, which is not integral. The non basic vari­
ables are x3 and X4, so the new constraint is X3 + X4 2: 1. Appending this constraint to Tableau 1, after 
the introduction of surplus variable xs and artificial variable X6, and solving the resulting program by the 
two-phase method, we generate Tableau 2. 

X! X2 XJ X4 Xs 

XJ 1 0 0 -1 0.75 1.5 
X2 0 1 0 -0.5 2 
XJ 0 0 -1 

0 0 0 0.25 12.5 

Tableau 2 

It follows from Tableau 2 that x T = 1.5, x ~ '= 2, x! = 1, with X4 and xs nonbasic. Since this solution 
is nonintegral, we take X4 + xs 2: 1 as the new ·~onstraint. Adjoining this constraint to Tableau 2, after the 
introduction of surplus variable x6 and artificial variable X7, and solving the resulting program by the 
two-phase method, we generate Tableau 3. 

X! X2 XJ X4 Xs X6 

X! 1 0 0 -1.75 0 0.75 0.75 
X2 0 1 0 1.5 0 -0.5 2.5 
XJ 0 0 1 2 0 -1 2 
Xs 0 0 0 1 1 -1 1 

0 0 0 0.75 0 0.25 12.25 

Tableau 3 

From Tableau 3, the current optimal solution is nonintegral, with nonbasic variables X4 and X6. The 
new constraint is thus x4 + X6 2: 1. Adjoining it to Tableau 3 and solving the resulting program by the 
two-phase method, we obtain X r = 0, X~ = 3, with z * = 12. Since this solution is integral, it is the 
optimal solution to the original integer program. 
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Supplementary Problems 

7.8 Use the Gormory algorithm to 

maximize: z = x1 + 9x2 + X3 

subject to: x1 + 2x2 + 3x3 s 9 

3xl + Zx2 + 2xJ s 15 

with: all variables nonnegative and integral 

7.9 Solve Problem 1.3 by the Gomory algorithm. 

7.10 Solve Problem 6.9 by the Gomory algorithm. 

7.11 Solve Problem 6.10 by the Gomory algorithm. 

7.12 Solve Problem 6.11 by the Gomory algorithm. 

7.13 Solve Problem 6.9 by the cut algorithm of Problem 7.6. 
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Chapter 8 
Integer Programming: 
The Transportation Algorithm 

STANDARD FORM 

A transportation problem involves m sources, each of which has available a; (i = 1, 2, ... , m) 
units of a homogeneous product, and n destinations, each of which requires b; (j = 1, 2, ... , n) 
units of this product. The numbers a; and b; are positive integers. The cost C;; of transporting 
one unit of product from the ith source to the jth destination is given for each i and j. The objec­
tive is to develop an integral transportation schedule (the product may not be fractionalized) 
that meets all demands from current inventory at a minimum total shipping cost. 

It is assumed that total supply and total demand are equal; that is, 
m 

~a;= ~b; (8.1) 
i=l j=l 

Equation (8.1) is guaranteed by creating either a fictitious destination with a demand equal to the 
surplus if total demand is less than total supply, or a fictitious source with a supply equal to the 
shortage if total demand exceeds total supply (see Problem 8.1). 

Let X;; represent the (unknown) number of units to be shipped from source i to destination 
j. Then the standard mathematical model for this problem is: 

m n 

minimize: z =' ~ ~ C;;X;; 
i= I j=l 

subject to: ~X;; = a; (i = 1, ... , m) 
j=l 

m 

~X;;= b; (j = 1, ... , n) 
i=l 

with: all X;; nonnegative and integral 

THE TRANSPORTATION ALGORITHM 

(8.2) 

The first approximation to system (8.2) is always integral (see Problem 7.3), and therefore is 
always the optimal solution. Rather than determining this first approximation by a direct ap­
plication of the simplex method, we find it more efficient to work with Tableau 8-1. All entries are 
self-explanatory, with the exception of the terms U; and v;, which will be explained shortly. The 
transportation algorithm is the simplex method specialized to the format of Tableau 8-1; as usual, it 
involves 

(i) finding an initial, basic feasible solution; 

(ii) testing the solution for optimality; 

(iii) improving the solution when it is not optimal; and 

(iv) repeating steps (ii) and (iii) until the optimal solution is obtained. 
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Destinations 

1 2 3 0 0 0 n Supply u, 

1 _d ~ w ~ 
X11 X12 X!J 0 0 0 X!n a! U! 

2 ~ ~ ~I ~ X21 X22 X2J 0 0 0 X2n a2 U2 

••• 00000 .. ..... . .. .. ... . ....... ... . ....... . ....... . ... 

m 
_:d Ld Ld L:d 

Xml Xm2 XmJ 0 0 0 Xmn am Um 

Demand b! b2 b3 0 0 0 b. 

Vj VI V2 VJ 0 0 0 v. 

Tableau 8-1 

AN INITIAL BASIC SOLUTION 

Northwest corner rule. Beginning with the (1, 1) cell in Tableau 8-1 (the northwest corner), 
allocate to x11 as many units as possible without violating the constraints. This will be the smaller of 
a1 and b1• Thereafter, continue by moving one cell to the right, i( some supply remains, or, if not, 
one cell down. At each step, allocate as much as possible to the cell (variable) under consideration 
without violating the constraints: the sum of the ith-row allocations cannot exceed a;, the sum of the 
jth-column allocations cannot exceed hi> and no allocation can be negative. The allocation may be 
zero. See Problem 8.3. 

Vogel's method. For each row and each column having some supply or some demand remaining, 
calculate its difference, which is the nonnegative difference between the two smallest shipping costs C;i 
associated with unassigned variables in that row or column. Consider the row or column having the 
largest difference; in case of a tie, arbitrarily choose one. In this row or column, locate that 
unassigned variable (cell) having the smallest unit shipping cost and allocate to it as many units as 
possible without violating the constraints. Recalculate the new differences and repeat the above 
procedure until all demands are satisfied. See Problems 8.5 and 8.6. 

Variables that are assigned values by either one of these starting procedures become the basic 
variables in the initial solution. The unassigned variables are nonbasic and, therefore, zero. We 
adopt the convention of not entering the nonbasic variables in Tableau 8-1-they are understood to 
be zero-and of indicating basic-variable allocations in boldface type. 

The northwest corner rule is the simpler of the two rules to apply. However, Vogel's method, 
which takes into account the unit shipping costs, usually results in a closer-to-optimal starting solution 
(see Problem 8.5). 

TEST FOR OPTIMALITY 

Assign one (any one) of the U; or vi in Tableau 8-1 the value zero and calculate the remaining u; 
and vi so that for each basic variable U; +vi= c;i· Then, for each nonbasic variable, calculate the 
quantity cii- U;- vi. If all these latter quantities are nonnegative, the current solution is optimal; 
otherwise, the current solution is not optimal. See Problems 8.4 and 8.8. 
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IMPROVING THE SOLUTION 

Definition: A loop is a sequence of cells in Tableau 8-1 such that: (i) each pair of consecutive cells 
lie in either the same row or the same column; (ii) no three consecutive cells lie in the 
same row or column; (iii) the first and last cells of the sequence lie in the same row or 
column; (iv) no cell appears more than once in the sequence. 

Example 8.1 The sequences {(1, 2), (1, 4), (2, 4), (2, 6), (4, 6), (4, 2)} and {(1, 3), (1, 6), (3, 6), (3, 1), (2, 1), (2, 2), 
(4, 2), (4, 4), (2, 4), (2, 3)} illustrated in Figs. 8-1 and 8-2, respectively, are loops. Note that a row or column can 
have more than two cells in the loop (as the second row of Fig. 8-2), but no more than two can be consecutive. 

1 2 3 4 5 6 1 2 3 4 5 6 

1 .... -+- -· I I 
-I I 

I ~ 

2 t • --+- .. 
I .I 
I !-I I 
I ~ 3 I I 

1 ·- -+- -- -· 1' I 

I ~-
I I 

2 
,_ ..... .... -· ~ 

I I 
I 

I + I 
I 

1' I I 
1-

• -·>- I 
I 

3 +--- -<- -+- -· I I 
I 1-

I t 
I I 

I I I I 
4 ·- -- --+- -- -· 4 ·---+- • 

Fig. 8-1 Fig. 8-2 

Consider the non basic variable corresponding to the most negative of the quantities c;i- U;- vi 
calculated in the test for optimality; it is made the incoming variable. Construct a loop consisting 
exclusively of this incoming variable (cell) and current basic variables (cells). Then allocate to the 
incoming cell as many units as possible such that, after appropriate adjustments have been made to 
the other cells in the loop, the supply and demand constraints are not violated, all allocations remain 
nonnegative, and one of the old basic variables has been reduced to zero (whereupon it ceases to be 
basic). See Problem 8.4. 

DEGENERACY 

In view of condition (8.1), only n + m - 1 of the constraint equations in system (8.2) are 
independent. Then, by Problems 3.13 and 3.14, a nondegenerate basic feasible solution will be 
characterized by positive values for exactly n + m - 1 basic variables. If the process of improving 
the current basic solution results in two or more current basic variables being reduced to zero simul­
taneously, only one is allowed to become nonbasic (solver's choice, although the variable with the 
largest unit shipping cost is preferred). The other variable(s) remains (remain) basic, but with a zero 
allocation, thereby rendering the new basic solution degenerate. 

The northwest corner rule always generates an initial basic solution (Problem 8.2); but it may 
fail to provide n + m - 1 positive values (Problem 8.3), thus yielding a degenerate solution. If Vogel's 
method is used, and does not yield that same number of positive values, additional variables with zero 
allocations must be designated as basic (see Problem 8.6). The choice is arbitrary, to a point: basic 
variables cannot form loops, and preference is usually given to variables with the lowest associated 
shipping costs. 

Improving a degenerate solution may result in replacing one basic variable having a zero value by 
another such. (This occurs at the first improvement in Problem 8.4.) Although the two degenerate 
solutions are effectively the same-only the designation of the basic variables has changed, not their 
values-the additional iteration is necessary for the transportation algorithm to proceed. 



CHAP. 8] THE TRANSPORTATION ALGORITHM 73 

Solved Problems 

8.1 A car rental company is faced with an allocation problem resulting from rental agreements 
that allow cars to be returned to locations other than those at which they were originally 
rented. At the present time, there are two locations (sources) with 15 and 13 surplus cars, 
respectively, and four locations (destinations) requiring 9, 6, 7, and 9 cars, respectively. Unit 
transportation costs (in dollars) between the locations are as follows: 

Dest. Dest. Dest. Dest. 
1 2 3 4 

Source 1 45 17 21 30 
Source2 14 18 19 31 

Set up the initial transportation tableau (Tableau 8-1) for the minimum-cost schedule. 

Since the total demand (9 + 6 + 7 + 9 = 31) exceeds the total supply (15 + 13 = 28), a dummy source is 
created having a supply equal to the 3-unit shortage. In reality, shipments from this fictitious source are 
never made, so the associated shipping costs are taken as zero. Positive allocations from this source to a 
distination represent cars that cannot be delivered due to a shortage of supply; they are shortages a 
destination will experience under an optimal shipping schedule. 

For this problem, Tableau 8-1 becomes Tableau 1A. The Xtj, u,, and vi are not entered, since they 
are unknown at the moment. 

Destinations 

1 2 3 4 Supply U; 

1 ~ ~ w w 15 

2 w I~ ~ I~ 
13 

(dummy) 3 w ~ __QJ _Qj 
3 

Demand 9 6 7 9 

Vj 

Tableau lA 

8.2 For an m x n transportation tableau, show that the northwest corner rule evaluates n + m - 1 
of the variables. 

Observe that after treating the (1, 1) cell, the rule is applied in the same form to a subtableau, the 
new northwest corner being either the original (1, 2) cell or the original (2, 1) cell. Suppose then 
(mathematical induction) that the result holds for the subtableau, which is either m X (n- 1) or 
(m - 1) x n. In either case, n + m - 2 variables are evaluated in the subtableau, so that 

(n + m - 2) + 1 = n + m - 1 

variables are evaluated in the tableau. Since the result obviously holds when n = m = 1, the proof by 
induction is complete. 
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8.3 Use the northwest corner rule to obtain an initial allocation to Tableau lA. 

We begin with xu and assign it the minimum of a1 = 15 and b1 = 9. Thus, xu= 9, leaving six 
surplus cars at the first source. We next move one cell to the right and assign X12 = 6. These two 
allocations together exhaust the supply at the first source, so we move one cell down and consider 
X22. Observe, however, that the demand at the second destination has been satisfied by the X12 
allocation. Since we cannot deliver additional cars to it without exceeding its demand, we must 
assign X22 = 0 and then move one cell to the right. Continuing in this manner, we obtain the degenerate 
solution (fewer than 4 + 3- 1 = 6 positive entries) depicted in Tableau lB. 

1 2 3 4 Supply U; 

1 
~ 

9 ~ 6 ~ ~ 15 

2 ~ I~ 0 ~ 7 ~ 6 13 

(dummy) 3 WJ UJ ~ I~ 
3 3 

Demand 9 6 7 9 

Vj 

Tableau lB 

8.4 Solve the transportation problem described in Problem 8.1. 

To determine whether the initial allocation found in Tableau lB is optimal, we first calculate the 
terms u; and vi with respect to the basic-variable cells of the tableau. Arbitrarily choosing u2 = 0 (since 
the second row contains more basic variables than any other row or column, this choice will simplify the 
computations), we find: 

(2, 2) cell: U2 + V;! = C22, 0+ V2 "= 18, or V2 = 18 

(2, 3) cell: u2+ v:~= en, 0+ V3= 19, or V3= 19 

(2, 4) cell: U2+ V4 = C24, 0+ V4= 31, or V4= 31 

(1, 2) cell: U1 + V2 = C12, U1 + 18= 17, or U1 = -1 

(1, 1) cell: U1 +Vi= Cu, -1 +Vi= 45, or V1 = 46 

(3, 4) cell: U3+ V4 = C34, UJ+31=0, or U3 = -31 

These values are shown in Tableau lC. Next we calculate the quantities cii- u;- vi for each nonbasic­
variable cell of Tableau lB. 

(1, 3)cell: c13- u1- V3 = 21- (-1)-19= 3 

(1,4)cell: C14- U!- V4= 30- (-1)- 31 = 0 

(2, 1) cell: C21- U2- V1 = 14-0-46 = -32 

(3, 1) Cell: C31- U3- V1 = 0- (-31)- 46 = -15 

(3, 2) Cell: C32- U3- V2 = 0- (-31)- 18 = 13 

(3, 3) cell: C33- U3- V3 = 0- (-31)- 19 = 12 

These results also are recorded in Tableau lC, in parentheses. 
Since at least one of these (cii- u;- Vj)-values is negative, the current solution is not optimal, and a 

better solution can be obtained by increasing the allocation to the variable (cell) having the largest 



CHAP. 8] THE TRANSPORTATION ALGORITHM 75 

I 2 3 4 Supply U; 

I w ~ w w 15 -I 
9 ~ (3) (0) 

2 w I~ I bJ bJ 
13 0 

(-32) + 7 6 

(dummy) 3 
~ ~ ~ [__Q__] 

3 -31 
(-15) (13) (12) 3 

Demand 9 6 7 9 

Vj 46 18 19 31 

Tableau lC 

negative entry, here the (2, 1) cell of Tableau 1C. We do so by placing a boldface plus sign (signaling an 
increase) in the (2, 1) cell and identifying a loop containing, besides this cell, only basic-variable 
cells. Such a loop is shown by the heavy lines in Tableau 1C. We now increase the allocation to the 
(2, 1) cell as much as possible, simultaneously adjusting the other cell allocations in the loop so as not to 
violate the supply, demand, or nonnegativity constraints. Any positive allocation to the (2, 1) cell would 
force x22 to become negative. To avoid this, but still make X21 basic, we assign X21 = 0 and remove X22 

from our set of basic variables. The new basic solution, also degenerate, is given in Tableau 10. 

I 2 3 4 Supply U; 

I w __d ~ ~ 15 
9 6 

2 w ~ ~ L2J 
13 

0 7 6 

(dummy) 3 ~ ~ WJ I~ 
3 

3 

Demand 9 6 7 9 

Vj 

Tableau lD 

We now check whether this solution is optimal. Working directly on Tableau 1D, we first calculate 
the new u; and v1 with respect to the new basic variables, and then compute C;j - u; - vi for each 
nonbasic-variable cell. Again we arbitrarily choose u2 = 0, since the second row contains more basic 
variables than any other row or column. These results are shown in parentheses in Tableau 1E. Since two 
entries are negative, the current solution is not optimal, and a better solution can be obtained by increasing 
the allocation to the (1, 4) cell. The loop whereby this is accomplished is indicated by heavy lines in 
Tableau 1E; it consists of the cells (1, 4), (2, 4), (2, 1), and (1, 1). Any amount added to cell (1, 4) must 
be simultaneously subtracted from cells (1, 1) and (2, 4) and then added to cell (2, 1), so as not to violate 
the supply-demand constraints. Therefore, no more than six cars can be added to cell (1, 4) without 
forcing X24 negative. Consequently, we reassign X14 = 4, make the appropriate adjustments in the loop, 
and remove X24 as a basic variable. The new, nondegenerate basic solution is shown in Tableau 1F. 
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I 2 3 4 Supply U; 

I 
~ ~ 6 ~ (-29) W(-32) 15 31 

9 \ • 
2 
~ I ~ (32) ~7 ~\ 13 0 

6 

(dummy) 3 
uJ ~ ~ I~ 

3 -31 3 

(17) (45) (12) 

Demand 9 6 7 9 

Vj 14 -14 19 31 

Tableau IE 

1 2 3 4 Supply U; 

I w ~ ~ bJ 15 
3 6 6 

2 w I~ L~ ~ 
13 

6 7 

(dummy) 3 ~ ~ 
!~ I~ 

3 
3 

Demand 9 6 7 9 

Vj 

Tableau IF 

I 2 3 4 Supply U; 

I w ~ ~ w 15 0 
(29) 6 3 6 

2 w ~~ ~ ~ 13 -2 
9 (3) 4 (3) 

(dummy) 3 ~ ~ ~ I~ 
3 -30 

(14) (13) (9) 3 

Demand 9 6 7 9 

Vj 16 17 21 30 

Tableau IH 
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After one further optimality test (negative) and consequent change of basis, we obtain Tableau 1H, 
which also shows the results of the optimality test of the new basic solution. It is seen that each 
C;j - U; - Vj is nonnegative; hence the new solution is Optimal. That is, X r2 = 6, X r3 = 3, X r4 = 6, X !1 = 
9, x:t = 4, xt = 3, with all other variables nonbasic and, therefore, zero. Furthermore, 

z * = 6(17) + 3(21) + 6(30) + 9(14) + 4(19) + 3(0) = $547 

The fact that some positive allocation comes from the dummy source indicates that not all demands 
can be met under this optimal schedule. In particular, destination 4 will receive three fewer cars than it 
needs. 

8.5 Use Vogel's method to determine an initial basic solution to the transportation problem 
described in Problem 8.1. 

The two smallest costs in row 1 of Tableau 1A are 17 and 21; their difference is 4. The two smallest 
costs in row 2 are 14 and 18; their difference is also 4. The two smallest costs in row 3 are both 0; so 
their difference is 0. Repeating this analysis on the columns, we generate the differences shown beside 
Tableau 5A. Since the largest of these differences, indicated by at, occurs in column 4, we locate the 
variable (cell) in this column having the lowest unit shipping cost and allocate to it as many units as 
possible. Thus X34 = 3, exhausting the supply of source 3 and eliminating row 3 from further consideration. 

I 2 3 4 Supply U; DIFFERENCES 

I w ___d ~ bJ 15 4 

2 
~ ~ ~ ~ 

13 4 

(dummy) 3 
~ _Q__j ~ I~ 

3 
3 

0 

Demand 9 6 7 9 

Vj 

DIFFERENCES 14 17 19 JOt 

Tableau SA 

We now compute the differences for each row and column anew, without reference to the elements 
in row 3. The results are shown beside Tableau 58, where the entry X for the second difference in row 
3 means simply that this row has been eliminated. The largest difference appears in column 1, and the 
variable in this column having the smallest cost is X21 (since row 3 is no longer under consideration). We 
assign X21 = 9, thereby satisfying the demand of destination 1. Accordingly, column 1 will not be involved 
in the ensuing calculations. 

With row 3 and column 1 eliminated, the new differences are shown beside Tableau 5C, where, 
again, an X indicates that a computation was not required. The largest difference occurs in row 1, and 
the variable in this row having the lowest unit cost is Xt2· Note that even if Ctt had been less than 17, Xtt 

would not have been selected here, since it falls in a column that has been eliminated. We set X12 = 
6, thereby meeting the demand of destination 2 and removing column 2 from further calculations. 

With row 3 and columns 1 and 2 no longer considered, the new differences are shown beside 
Tableau 50. The largest difference occurs in row 2, and the smallest cost in that row and in columns 
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2 

(dummy) 3 

Demand 

Vj 

DIFFERENCES 

I 

2 

(dummy) 3 

Demand 
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DIFFERENCES 
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9 

14 
31t 
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~ 

w 

9 

9 

~ 

9 

14 
31t 
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2 

~ 

I~ 

~ 

6 

17 

2 

~ 
6 

I~ 

~ 

6 

17 

3 

21 _I --

~ t-· 

~ --

7 

19 
2 

4 

~ 

~ 

I~ 
3 

9 

JOt 

Tableau SB 

3 4 

~J ~ 

I.J 
-· I~ 

(~ -- I~ 
3 

7 9 

19 30t 
2 
-· ,_ 

Tableau SC 

Supply 

15 

13 

3 

Supply 

15 

13 

3 

(PART I 

U; DIFFERENCES 

4 4 

4 4 

0 X 

U; DIFFERENCES 

4 4 4t 

4 4 

0 X X 

still under consideration is 19. Consequently, we assign x23 = 4, which with the earlier assignment 
X:n = 9 exhausts the supply of source 2 and removes row 2 from further consideration. 

With rows 2 and 3 eliminated, we no longer can calculate differences for the remaining columns. 
This is a signal that the remaining allocations are uniquely determined. Here we must set X13 = 3 
and X14 = 6 if we are to meet all demands without exceeding supplies. The result is the allocation 
shown in Tableau lH, which was determined in Problem 8.4 to be optimal. 
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2 

(dummy) 3 

Demand 

Vj 

DIFFERENCES 

1 

w 
~ 

~ 

9 

14 
31t 
X 
X 
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2 

~ 

~ 

_Q__j 

6 

17 
1 

X 

6 

3 

~ 

~ 

~ 

7 

19 
2 
2 
2 

4 

4 

bJ 

w 
~ 

9 

JOt 
1 
1 

3 

Tableau SD 

Supply 

15 

13 

3 

8.6 Use the transportation algorithm to solve Problem 1.12. 

79 

U; DIFFERENCES 

4 4 4t 9 

4 4 12t 

0 X X X 

Since total supply equals total demand, no fictitious source or destination need be created, and the 
transportation tableau becomes Tableau 6A. Applying Vogel's method and using the same notation 
as adopted in Problem 8.5, we arrive at Tableau 68 after the second set of differences have been 
calculated. There is a two-way tie for the largest difference. A good procedure is to scan each 
candidate, here row 1 (with column 3 eliminated) and column 1, for that variable with the lowest unit 
cost. Again there is a tie, so we arbitrarily select X12. Setting X12 = 700 satisfies the entire demand of 
destination 2 and, along with the previous allocation to X13, exhausts the supply of source 1. With 
columns 2 and 3 and row 1 eliminated, the remaining allocation, X21 = 1000, is uniquely determined, and 
Vogel's method thus leads to Tableau 6C. This solution, however, is not complete, as only three of the 
necessary 3 + 2- 1 = 4 basic variables have been identified. We arbitrarily select X23 = 0 as the fourth 
basic variable, since it is the unassigned variable with the lowest unit cost and since its inclusion as a 
basic variable does not generate a loop with the previously defined basic variables. The result is the 
basic solution, necessarily degenerate, given in Tableau 6D. 

1 2 3 Supply U; 

1 0 ~ ~ 1200 

2 
~ ~ ~ 

1000 

Demand 1000 700 500 

Vj 

Tableau 6A 
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1 2 3 Supply U; DIFFERENCES 

1 
~ ~ w 1200 2t 

500 

2 
~ ~ _EJ 

1000 0 

Demand 1000 700 500 

Vj 

DIFFERENCES 0 
0 X 

Tableau 68 

I 2 3 Supply U; DIFFERENCES 

I w ~ ~ 1200 
700 500 

2t It 

2 w 3 
1000 

__E_j 
1000 0 

Demand 1000 700 500 

Vj 

DIFFERENCES 0 
0 X 

Tableau 6C 

I 2 3 Supply U; 

I w 13_1 -- ~ 1200 0 

(2) 700• -500 

2 
~ 13-' f--

_EJ 
1000 1 

1000 (-1) + 0 

Demand 1000 700 500 

Vj 12 13 11 

Tableau 6D 
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We now test this solution for optimality, working directly on Tableau 6D; it is not optimal. Im­
proving it, we obtain the allocation shown in Tableau 6E, which is optimal. Thus, X r2 = 700, X r3 = 
500, x!1 = 1000, X t1 = x!2 == X 1J = 0, with 

z* = 700(13) + 500(11)+ 1000(13) = 27 600~ = $276 

Note that this optimal allocation is identical to the initial allocation; only the designation of the basic 
variables has changed. 

I 2 3 Supply U; 

I 
~ ~ ~ 1200 0 

(I) 700 500 

2 
~ ~ _E_l 

1000 0 
1000 0 (I) 

Demand 1000 700 500 

Vj 13 13 11 

Tableau 6E 

8.7 Find the unsymmetric dual to system (8.2) with the integer requirements ignored. 

The primal corstraints may be written as the (m + n) x mn system 

Xu+···+ x,,. 

X21 + • • "+ X2n 

Xm I + " " " + Xmn = am (1) 

xu +Xm! 

X12 + X22 +Xm2 

............................................... 
X!n +xm,. = b,. 

It is seen that each column of the coefficient matrix A contains exactly two 1's; specifically, column 
(i- l)n + j has a 1 in row i and a 1 in row m + j. Then, the [(i- 1)n + j]th dual constraint, as 
given in (5.4), involves only the ith and (m + j)th dual variables. Denoting the dual variables by 
u~, u2, ... , Um, v~, v2, ... , v,., this constraint is simply 

and the complete dual program is expressible as 

maximize: z = ~ a;u; + ~ bivi 
i-1 i-1 

subject to: u; +vi :s; C;i (i = 1, 2, ... , m; j = 1, 2, ... , n) 

Program (2) has matrix form (5.4) with 

B=[a~, ... ' am, b,, ... 'b,.]T 

and W = [UT, VTf. 

(2) 
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8.8 Use the result of Problem 8.7 to validate the optimality test in the transportation algorithm. 

Let X= [x11, Xt2, ..• , x.,., ... , Xm •· .•• , Xm,.f be any feasible solution to the primal program, (8.2), 
and W be any feasible solution to the dual program, (2) of Problem 8.7 in matrix form. It follows from 
Problem 5.9 that 

m " 

or (1) 
i=l i=l i=l j=l 

and it is easy to show (compare Problem 5.24) that if (1) holds with equality, X and W are optimal 
solutions to their respective programs. 

Now, suppose that the transportation algorithm has produced a tableau for which numbers u1 and 
vj can be computed which have the following properties: (a) for each cell (i, j) containing a basic 
variable x t (whether positive or zero), u 1 + v j = C;j; (b) for each cell (i, j) containing a non basic 
variable, xt = 0, u1 + vj :S C;j. Then X* is a feasible solution to the primal program and W* is a 
feasible solution to the dual program. Moreover, using the primal constraint equations, we have 

and ± biv j = ± ( ± X t) V j = ± ± V j X t 
j=l j=l I= I i=l /=I 

Consequently, 

" m " L a,v1+ L biv; = L L (u1 + v;)xt = L L C;jX;j (2) 
i=l /=1 i=dj=l i=lj=l 

the last equality following from properties (a) and (b) above. But (2) is just (1) for X* and W*, holding 
with equality. Hence, X* is optimal for the transportation problem (and W* is optimal for the dual 
problem). 

Supplementary Problems 

8.9 Set up a transportation tableau for Problem 1.21 and then use the transportation algorithm to determine 
an optimal production schedule. 

8.10 Use the transportation algorithm to solve Problem 1.23. 

8.11 A regional airline can buy its jet fuel from any one of three vendors. The airline's needs for the 
upcoming month at each of the three airports it serves are 100 000 gal at airport 1, 180 000 gal at airport 
2, and 350 000 gal at airport 3. Each vendor can supply fuel to each airport at a price (in cents per 
gallon) given by the following schedule: 

Airport I Airport 2 Airport 3 

Vendor I 92 89 90 
Vendor 2 91 91 95 
Vendor 3 87 90 92 

Each vendor, however, is limited in the total number of gallons it can provide during any one month. 
These capacities are 320 000 gal for vendor 1, 270 000 gal for vendor 2, and 190 000 gal for vendor 3. 
Determine a purchasing policy that will supply the airline's requirements at each airport at minimum 
total cost. 

8.12 A baking firm can produce a specialty bread in either of its two plants, as follows: 
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Production Capacity, Production Cost, 
Plant loaves f/loaf 

A 2500 23 
B 2100 25 

Four restaurant chains are willing to purchase this bread; their demands and the prices they are willing to 
pay are as follows: 

Chain Maximum Demand, Price Offered, 
loaves t/Ioaf 

I 1800 39 
2 2300 37 
3 550 40 
4 1750 36 

The cost (in cents) of shipping a loaf from a plant to a restaurant chain is given in the following table: 

Chain I Chain 2 Chain 3 Chain 4 

Plant A 6 8 11 9 
Plant B 12 6 8 5 

Determine a delivery schedule for the baking firm that will maximize its total profit from this bread. 

8.13 Two drug companies have inventories of 1.1 and 0.9 million doses of a particular flu vaccine, and an 
epidemic of the flu seems imminent in three cities. Since the flu could be fatal to senior citizens, it is 
imperative that they be vaccinated first; others will be vaccinated on a first-come-first-served basis while 
the vaccine supply lasts. The amounts of vaccine (in millions of doses) each city estimates it could 
administer are as follows: 

City I City 2 City 3 

To Elders 0.325 0.260 0.195 
To Others 0.750 0.800 0.650 

The shipping costs (in cents per dose) between drug companies and cities are as follows: 

City I City 2 City 3 

Company I 3 3 6 
Company 2 I 4 7 

Determine a minimum-cost shipping schedule which will provide each city with at least enough vaccine 
to care for its senior citizens. (Hint: Divide each city into two destinations, senior citizens and others. 
Create a dummy source. Make the shipping costs from the dummy to the senior-citizen destinations 
prohibitively high, effectively guaranteeing no shipments along those links.) 

8.14 Prove that if the costs in any row or any column of a transportation tableau are uniformly reduced by the 
same number (positive or negative), then the resultant problem has the same optimal solution as the 
original problem. 



Chapter 9 
Integer Programming: 
Scheduling Models 

PRODUCTION PROBLEMS 

Production problems involve a single product which is to be manufactured over a number of 
successive time periods to meet prespecified demands. Once manufactured, units of the product can 
be either shipped or stored. Both production costs and storage costs are known. The objective is 
to determine a production schedule which will meet all future demands at minimum total cost (which 
is total production cost plus total storage cost, as total shipping cost is presumed fixed). (See Problem 
9.1.) 

Production problems may be converted into transportation problems by considering the time 
periods during which production can take place as sources, and the time periods in which units will 
be shipped as destinations. The production capacities are taken to be the supplies. Therefore, X;i 

denotes the number of units to be produced during time period i for shipment during time period j, 
and c;i is the unit production cost during time period i plus the cost of storing a unit of product from 
time period i until time period j. Since units cannot be shipped prior to being produced, C;i is made 
prohibitively large for i > j to force the corresponding xii to be zero. 

TRANSSHIPMENT PROBLEMS 

A transshipment problem, like a transportation problem, involves sources, having supplies, and 
destinations, having demands. In addition, however, it also involves junctions, through which goods 
can be shipped. Such junctions may be distinct from sources and destinations, or a source or des­
tination may also function as a junction. Unit shipping costs are given between all directly accessible 
locations, and the objective is to develop a transportation schedule that will meet all demands at 
minimum total cost. (See Problems 9.2 and 9.3.) 

Transshipment problems may be converted into transportation problems by making every 
junction both a source and a destination. As in the transportation algorithm, total supply is 
presumed equal to total demand; if this is not true initially, a fictitious source or destination is added. 
Thus, the total number of units in the system is given either by the sum of the supplies or by the 
sum of the demands. Each junction is assigned a supply equal to its original supply (or zero, if the 
junction did not originally coincide with a source) plus the total number of units in the system; 
and it is assigned a demand equal to its original demand (or zero, if the junction did not originally 
coincide with a destination) plus the total number of units in the system. These assignments allow 
for the possibility that all units may pass through a given junction. The cost of transporting 1 unit 
from a junction (considered as a source) to itself (considered as a destination) is zero. Those units 
that do not pass through a junction under the optimal schedule will appear as allocations from the 
junction to itself. 

ASSIGNMENT PROBLEMS 

Assignment problems involve scheduling workers to jobs on a one-to-one basis (more generally, 
they involve permutations of a set of objects). The number of workers is presumed equal to the 
number of jobs-a condition that can be guaranteed by creating either fictitious workers or jobs, as 
needed-and the time C;i required by the ith worker to complete the jth job (or, the value of the ith 

84 
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object in the jth position) is known. The objective is to schedule every worker to a job so that all 
jobs are completed in the minimum total time (or, to find the permutation that has the greatest total 
value). (See Problem 9.4.) 

Assignment problems can be converted into transportation problems by considering the workers 
as sources and the jobs as destinations, where all supplies and demands are equal to 1. A solution 
procedure more efficient than the general transportation algorithm is the Hungarian method, which 
uses only the cost matrix, Tableau 9-1, as input. There are four steps: 

Jobs 
2 3 n 

1 cu Ct2 Cl3 Ctn 

E 2 C21 C22 C23 C2n 

~ 3 C31 C32 C33 CJ. 

~-·· 
n Cnt Cn2 Cn3 • • • Cnn 

Tableau 9-1 

STEP 1 In each row of Tableau 9-1, locate the smallest element and subtract it from every element 
in that row. Repeat this procedure for each column (the column minimum is determined 
after the row subtractions). The revised cost matrix will have at least one zero in every 
row and column. 

STEP 2 Determine whether there exists a feasible assignment involving only zero costs in the 
revised cost matrix. In other words, find if the revised matrix has n zero entries no two of 
which are in the same row or column. If such an assignment exists, it is optimal. If no 
such exists, go to Step 3. 

STEP 3 Cover all zeros in the revised cost matrix with as few horizontal and vertical lines as 
possible. Each horizontal line must pass through an entire row, each vertical line must 
pass through an entire column; the total number of lines in this minimal covering will be 
smaller than n. Locate the smallest number in the cost matrix not covered by a line. 
Subtract this number from every element not covered by a line and add it to every element 
covered by two lines. 

STEP 4 Return to Step 2. 

See Problem 9.5. According to a basic result in graph theory, the number of lines required in Step 3 will 
be precisely equal to the largest number of zeros in the revised matrix such that no two of them are in the 
same row or column. 

THE TRAVELING SALESMAN PROBLEM 

This problem involves an individual who must leave a base location, visit n- 1 other locations (each 
once and only once), and then return to the base. The cost of traveling between each pair of locations, 
c;" is given with c;i not necessarily equal to cii· The objective is to schedule a minimum-cost 
itinerary. Since what is important is the circuit executed by the salesman, it is purely a matter of 
convenience which of the n locations is designated the base. 

An assignment problem may be associated with each traveling salesman problem, as fol­
lows. Arbitrarily label the locations involved in the traveling salesman problem with the integers 
1, 2, ... , n. Consider a set of n "workers" and a set of n "jobs." The cost of an assignment, c;" is the 
cost of traveling directly from location i to location j. It is clear that every feasible solution to the 
traveling salesman problem corresponds to a feasible solution to the associated assignment prob­
lem. However, the assignment problem will possess feasible solutions (corresponding to noncyclic 
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permutations) which do not represent a feasible solution of the traveling salesman problem. The 
optimal solution of the associated assignment problem serves as a first approximation to the solution of 
the traveling salesman problem. We apply the Hungarian method to the cost matrix of the assignment 
problem (which is the same as the matrix of the salesman problem), and if the result corresponds to a 
feasible itinerary, that itinerary must be optimal. If not, a variant of the branch-and-bound method 
(Chapter 6) may be used to create two new assignment problems which between them contain the 
optimal solution of the traveling salesman problem. 

Branching is on the matrix element Cpq, where p ~ q is any one of the assignments in the current 
first approximation (which, by hypothesis, does not reflect a feasible itinerary). One new cost matrix 
is obtained by replacing Cpq by a prohibitively large number; the other new matrix is obtained by 
replacing Cqp (the transposed element), as well as all elements in the pth row or qth column except Cpq 

itself, by a prohibitively large number. 
Branch-and-bound procedures are computationally impractical for large problems involving 

hundreds of locations, so a number of "near-optimal" algorithms have been devised for such 
situations. (See Problem 9.7.) The objection to near-optimal procedures is that, although they are 
quite good generally, they can, in particular instances, generate very poor approximations to the 
optimal solution. (See Problem 9.9.) 

Solved Problems 

9.1 An industrial firm must plan for each of the four seasons over the next year. The company's 
production capacities and the expected demands (all in units) are as follows: 

-· 
Spring Summer Fall Winter 

Demand 250 100 400 500 

Regular 
Capacity 200 300 350 ... 

Overtime 
Capacity 100 50 100 150 

Regular production costs for the firm are $7.00 per unit; the unit cost of overtime varies 
seasonally, being $8.00 in spring and fall, $9.00 in summer, and $10.00 in winter. 

The company has 200 units of inventory on January 1, but, as it plans to discontinue the 
product at the end of the year, it wants no inventory after the winter season. Units produced 
on regular shifts are not available for shipment during the season of production; generally, 
they are sold during the following season. Those that are not are added to inventory and 
carried forward at a cost of $0.70 per unit per season. In contrast, units produced on 
overtime shifts must be shipped in the same season as produced. Determine a production 
schedule that meets all demands at minimum total cost. 

Time periods during which production can take place are: the overtime shifts for the four seasons, 
and the regular shifts for the first three seasons. Each of these seven periods becomes a source, and to 
them we add an eighth source, initial inventory, since it too can supply goods. The total supply is 1450 
units. Time periods in which products will be required are the four seasons; these become the destinations, 
with a total demand of 1250 units. Since total supply exceeds total demand, a fictitious destination must be 
created, with a demand equal to the 200-unit excess. 
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Positive allocations from a source to the fictitious destination represent units that could be produced 
by the source but will not be, because they are not needed. Since all units in initial inventory already 
have been produced, a positive allocation from initial inventory to the dummy must be avoided. This is 
done by assigning a prohibitively large number ($10 000) as the associated unit cost. All other costs 
associated with the dummy are, as usual, taken to be zero. 

Other allocations which must be avoided are also assigned prohibitively large costs. These include 
shipments from regular shifts to the current season or to earlier seasons, and shipments from overtime 
shifts to any but the current season. Costs associated with the initial inventory are future carrying costs 
only, since production costs and past carrying charges have already been incurred and cannot be mini­
mized. The remaining cost entries are simply the production costs plus the storage charges. 

Applying the transportation algorithm to this problem, we obtain Tableau 1 as the optimal 
tableau. It follows that the spring demand will be met by using all 200 units from inventory and 50 units 
from overtime production in the spring. The summer demand is met from the regular spring shift. 
The fall demand is met by 300 units from the regular summer shift plus 100 units from overtime pro­
duction in the fall. The winter demand is satisfied by using 100 units made in the spring on a regular 
shift and stored, plus 350 units from the regular fall production and 50 units produced in the winter on an 
overtime shift. 

Spring Summer Fall Winter dummy Supply U; 

Regular 1oooo I 1.00 I 1.10 I 8.40 I ~60) 200 8.40 (Spring) (9993.60) 100 (0) 100 

Regular 1oooo I 10000 I 1.00 I 7.70 I ~30) 300 7.70 (Summer) (9994.30) (9993.70) 300 0 

Regular 10000 I 10000 I 10oooJ 1.00 I ~3) 350 (Fall) (9995) (9994.40) (9993.70) 350 7 

Initial w o.1o I 1.40 I 2.10 J 10000 J 
Inventory 2CIO (0.10) (0.10) (0.10) (10 008) 200 2 

Overtime 8.oo I 10000 I 1oooo I 10000 I W_ 100 (Spring) 50 (9991.40) (9990.70) (9990) 50 10 

Overtime 10000 I 9.00 _j 1oooo I 10000 I W_ 50 10 (Summer) (9992) (0.40) (9990.70) (9990) 50 

Overtime 10000 I 10000 I 8.00 J 10000 J 
-Y.30) 

100 8.70 (Fall) (9993.30) (9992.70) 100 (9991.30) 

Overtime 10000 I 10000 I 1oooo I 10.00 I W.oo 150 10 (Winter) (9992) (9991.40) (9990.70) 50 

Demand 250 100 400 500 200 

Vj -2 -1.40 -0.70 0 -10 

Tableau 1 

9.2 A corporation must transport 70 units of a product from location 1 to locations 2 and 3, in the 
amounts of 45 and 25 units, respectively. Air freight charges cii (in dollars per unit) between 
locations served by the air carrier are given in Table 9-1, where dotted lines signify that 
service is not available. Determine a shipping schedule that allocates the required number of 
goods to each destination at a minimum total freight cost. No shipment need be flown 
directly; shipments through intermediate points are allowed. 
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Table 9-1 

~ 1 2 3 4 

1 ... 38 56 34 
2 38 ... 27 . .. 
3 56 27 ... 19 -25 
4 34 ... 19 . .. 

Fig. 9-1 

This problem is depicted schematically by Fig. 9-1, wherein supplies are indicated by positive, and 

demands by negative, numbers. Notice that, despite the symmetry of Table 9-1, the freight rates are not 

proportional to distance. Location 4 is a pure junction. Locations 2 and 3 serve as both destinations and 

junctions (goods can be shipped from location 1 to location 3 through location 2, and from 1 to 2 through 3}, 

while location 1 serves as both a source and a junction. Since it could never be optimal to ship goods from 

location 1 and have them return at some later time, only to be shipped out again, the problem can be 

simplified by not allowing shipments to location 1, thereby restricting it to being solely a source. 
For application of the transportation algorithm, we increase the supply and demand of every junction­

locations 2, 3, and 4--by the total number of units in the system, 70 units. Also, we define C24 = C42 = 
$10 000, to force zero shipments over the nonexistent routes 2-+ 4 and 4-+ 2, and define Czz = C33 = C44 = 
0. The transportation algorithm produces the optimal Tableau 2. Thus, 45 units will be shipped from 

location 1 directly to location 2, satisfying its demand, while the remaining 25 units will be shipped from 

location 1 to location 4, whereupon they will be forwarded to location 3. Note that x!z = x~3 = 

70, indicating that (all} 70 units avoid passing through these locations. Similarly, x :4 = 45, signifying that 

45 of the 70 units are not shipped through location 4. 

Destinations 

2 3 4 Supply U; 

W. 5~j_ W. 1 45 r-- (3) 25 70 0 

_Q__j70 
- 27_J 10000 I 

2 r----(12) (10 004) 70 -38 

3 
_Ej_ 

(42) 
r-- o_j 

70 
w 

(38) 70 -53 

1oooo 1 _Jc~ __Q_j45 70 -34 4 (9996) 25 

Demand 115 95 70 

Vj 38 53 34 

Tableau 2 
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9.3 For the data of Fig. 9-2, determine a shipping schedule that meets all demands at a minimum 
total cost. 

+70 -30 -45 

Fig. 9-2 

Locations 1 and 2 are sources, while locations 5 and 6 are destinations. Location 3 is both a source 
and a junction, whereas location 4 serves both as a destirtation and a junction. Because total supply is 
180 units but total demand is only 105 units, location 7 is created as a dummy destination with a demand 
of 180- 105 = 75 units. Since every junction is made both a source 'and a destination, by adding 180 
units to both its supply and its demand, the transportation tableau will involve sources 1, 2, 3, 4, and 
destinations 3, 4, 5, 6, 7. Besides the costs given in Fig. 9-2, we have zero as the cost from a junction (as 
a source) to itself (as a destination}, zero as the cost from any source to the dummy, and an excessive 
amount ($10 000) as the cost over any nonexistent link (e.g., 1-+ 6). 

Tableau 3 is the optimal transportation tableau. Location 3 receives 20 units from location 1 and 
70 units from location 2, whereupon it redistributes these units along with its own initial supply of 15 
units to locations 4, 5, and 6. After all demands have been satisfied, location 1 will remain with 75 units, 
indicated in Tableau 3 by the allocation from location 1 to the dummy. The allocations x~J = 90 and 
x ~4 = 180 are book entries signifying the numbers of units that do not pass through junctions 3 and 4, 
respectively. 

Destinations 

3 4 5 6 (dummy)7 Supply U; 

~ 10000 J ~1) 10000 J W,s 95 3 1 20 (9994) (9993) 

j 
__!__]_ ~2) 10000 J 1oooo I 

w(1) 70 2 2 70 (9994) (9994) 

_Q__j_ ~- ~ ~- w(3) 195 0 3 90 30 30 45 

toooo I ~80 1oooo I ~1) w(6) 180 -3 4 (10 003) (9999) 

Demand 180 210 30 45 75 

Vj 0 3 4 4 -3 

Tableau 3 
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9.4 Solve Problem 1.13 by the Hungarian method. 

9.5 

Table 1-1 of Problem 1.13 is expanded to make the number of events equal to the number of 
swimmers; the result is Tableau 4A. As usual, costs (times) associated with the dummies, events 5 and 
6, are taken to be zero. The rationale here is that events 5 and 6 do not exist, so they can be completed 
in zero time; swimmers assigned to these events will be the ones not entered in the four-swimmer relay. 

The Hungarian method is initiated by subtracting 0 from every row of Tableau 4A and then 
subtracting 65, 69, 63, 55, 0, and 0 from columns 1 through 6, respectively; this generates Tableau 
4B. Since this matrix does not contain a zero-cost feasible solution, we cover the existing zeros by as 
few horizontal and vertical lines as possible. One such covering is that shown in Tableau 4B; another, 
equally good, is obtained by replacing the line through row 3 by a line through column 4. The smallest 
uncovered element is 1, appearing in the (2, 2) position. Subtracting 1 from every uncovered element in 
Tableau 4B and adding 1 to every element covered by two lines-the (1, 5), (1, 6), (3, 5), (3, 6), (5, 5), and 
(5, 6) elements-we arrive at Tableau 4C. 

Tableau 4C also does not contain a feasible zero-cost assignment. Repeating Step 3 of the Hungarian 
method, we determine that 1 is again the smallest uncovered element. Subtracting it from each un­
covered element and adding it to every clement covered by two lines, we obtain Tableau 4D, which 
does contain a feasible zero-cost assignment, as indicated by the starred entries. Thus, an optimal 
allocation is swimmer 1 to event 1 (backstroke), swimmer 2 to event 3 (butterfly), swimmer 3 to event 4 
(freestyle), and swimmer 5 to event 2 (breaststroke); swimmers 4 and 6 are not entered in the medley. 
The minimum total time (in seconds) is calculated from Tableau 4A as 

Z * = C11 + C23 + C34 + Cs2 = 65 + 65 +55+ 69 = 254 S 

This solution, however, is not the only optimal one. An equally optimal assignment can be obtained 
from Tableau 4D: assign swimmer 1 to event 3 and swimmer 2 to event 1, leaving the other assignments 
unchanged. 

Events 

2 3 4 5 6 1 2 3 4 5 6 

65 73 63 57 0 0 1 ., 
2 67 70 65 58 0 0 .. .. 2 2 1 2 3 

~ 3 68 72 69 55 0 0 

i 4 67 75 70 59 0 0 
(ll 5 71 69 75 57 0 0 

3 v v 

4 2 6 7 4 
5 .1>. 

v v ·~ -
6 69 71 66 59 0 0 6 4 2 3 4 

Tableau 4A Tableau 4B 

2 3 4 5 6 2 3 4 5 6 

" " o• 5 0 2 2 2 
2 2 2 0 0 o• 1 0 0 
3 ~ " J v 3 3 4 6 o• 2 2 
4 1 6 3 4 0 5 5 2 o• 0 
5 6 12 2 5 5 o• 11 1 1 1 
6 3 2 3 6 2 1 2 0 o• 

Tableau 4C Tableau 4D 

Verify the Hungarian method. 

As a consequence of Problem 8.14 (remember that the assignment problem is a special trans­
portation problem), Step 1 of the Hungarian method does not alter the optimal assignment, but simply 
provides a cost matrix with smaller entries. Since each element in this new cost matrix is nonnegative, a 
zero-cost assignment, if feasible, must be optimal. Thus Step 2 of the method. If no zero-cost feasible 
solution exists, then the zeros in the current cost matrix are not well distributed. 

Step 3 is a procedure for redistributing and, perhaps, introducing additional zeros. The operations 
involving c, the smallest (positive) cost not covered by a line in the current matrix, replace the current 
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matrix by a new nonnegative matrix such that (i) the element c itself is replaced by a zero, (ii) those old 
zeros covered by a single line are retained, and (iii) the rest of the old zeros are replaced by c. But since 
these operations are equivalent to subtracting c/2 from each uncovered row and each uncovered column, 
and adding c/2 to each covered row and each covered column, Problem 8.14 once more guarantees that 
the optimal assignment is unaltered. 

9.6 Xanadu National Airlines offers an excursion at one low p!lce that allows a eerson to cover 
its entire service route. The ticket, which is valid for two weeks from the date of purchase, 
carries the following restriction: No city on the route can be revisited except the city of 
origin, which can be the last stop on the excursion. A foreign tourist, presently in city 1 (the 
capital), wishes to see provincial cities 2, 3, and 4, before returning to the capital; she decides 
to travel on the airlines. Flight times (in minutes) between the cities of interest are given in 
the table below, where dotted entries signify that service between corresponding locations is 
not available. Determine an acceptable itinerary which will minimize her total flight time. 

Cities 2 3 4 2 3 4 

65 53 37 10000 65 53 37* 
2 65 95 2 65 10000 95* 10000 
3 53 95 81 3 53 95* 10000 81 
4 37 81 4 37* 10000 81 10000 

Tableau 6A 

We begin by replacing each dotted entry in the timetable by an exorbitant number of prohibit assign­
ments to those links under an optimal itinerary. The result is Tableau 6A. Applying the Hungarian 
method to this tableau, we obtain (on the second application of Step 2) the assignment indicated by the 
starred elements; namely, 1-+ 4, 4-+ 1, 2-+ 3, 3-+ 2. This is not a valid itinerary, for it returns the tourist 
to city 1 immediately after her first stop in city 4. 

2 3 4 2 3 4 

10000 65* 53 10000 10000 10000 10000 37* 
2 65 10000 95* 10000 2 65* 10000 95 10000 
3 53 95 10000 81* 3 53 95* 10000 10000 
4 37* 10000 81 10000 4 10000 10000 81* 10000 

Tableau 6B Tableau 6C 

We now branch on the starred element Ct4 = 37 of Tableau 6A. The first branch is effected by 
replacing Ct4 by a prohibitively large number, as shown in Tableau 6B. The second branch is effected by 
replacing C4t, the transposed element, as well as all elements in the fourth row or first column except Ct4 

itself, by a prohibitively large number. This is done in Tableau 6C. 
Applying the Hungarian method to each of these two new cost matrices separately, we obtain valid 

itineraries for both: 1-+2, 2-+3, 3-+4, 4-+1, with a cost of 278min, for Tableau 6B; 
and 1-+ 4, 4-+ 3, 3-+ 2, 2-+ 1, with a cost of 278 min, for Tableau 6C. Both solutions are optimal. 
Indeed, whenever the cost matrix is symmetric, an optimal circuit remains optimal when described in the 
opposite sense. 

9.7 Develop a "near-optimal"algorithm for the traveling salesman problem. 

We develop the nearest-neighbor method, based on the principle of sequentially selecting the cheapest 
remaining link such that its inclusion does not complete a circuit too soon. 

STEP 1 Locate the smallest element in the cost matrix (break ties arbitrarily), circle it, and include the 
corresponding link in the itinerary. 
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STEP 2 If the newly circled element is Cpq, replace all other elements in the pth row and all other 
elements in the qth column, as well as the transposed element Cqp, by a prohibitively large 
number. 

STEP 3 Locate the smallest uncircled element in the latest cost matrix. Tentatively adjoin its corres­
ponding link to the (incomplete) itinerary. If the resulting itinerary is not infeasible, circle 
the designated cost and go to Step 5. 

STEP 4 If the resulting itinerary is infeasible, remove the latest link from the itinerary and replace its 
corresponding cost by a prohibitively large number. Go to Step 3. 

STEP 5 Determine whether the itinerary is complete. If so, accept it as the near-optimal one. If not, 
go to Step 2. 

Step 2 ensures that a location, once left, will not be left again, and that a location, once entered, will 
not be entered again. Hence, the tentative itinerary of Step 3 will be feasible, unless it contains a circuit 
of fewer than n links. 

9.8 Use the nearest-neighbor method (Problem 9.7) to find a near-optimal, traveling salesman 
itinerary, if the cost matrix is given by Tableau 8A. 

2 3 4 5 2 3 4 5 

35 80 105 165 1000 35 80 105 165 
2 35 45 20 80 2 35 1000 45 20 80 
3 80 45 30 75 3 80 45 1000 30 75 
4 105 20 30 60 4 105 20 30 1000 60 
5 165 80 75 60 5 165 80 75 60 1000 

Tableau SA Tableau 8B 

We first replace the dotted entries in the cost matrix with a prohibitively large number (1000), 
thereby obtaining Tableau 8B. The smallest entry in this tableau is either Cz4 or C42. Arbitrarily 
choosing cz4, we circle it, indicating that we have accepted link 2-+4 as part of the final itinerary. We 
then replace all other elements in the second row and all other elements in the fourth column, as well as 
the transposed element C42, by 1000. The result is Tableau 8C. 

The smallest uncircled element in Tableau 8C is C43 = 30. Adjoining link 4-+ 3 to the current in­
complete itinerary, we have the (still incomplete) itinerary 2-+ 4, 4-+ 3, which is not infeasible. Con­
sequently, we circle C43 and replace all other elements in the fourth row and all other elements in the 
third column of Tableau 8C, as well as the transposed element C34, by 1000. The result is Tableau 8D. 

2 3 4 5 2 3 4 5 

1000 35 80 1000 165 1000 35 1000 1000 165 
2 1000 1000 1000 ® 1000 2 1000 1000 1000 ® 1000 
3 80 45 1000 1000 75 3 80 45 1000 1000 75 
4 105 1000 30 1000 60 4 1000 1000 @) 1000 1000 
5 165 80 75 1000 1000 5 165 80 1000 1000 1000 

Tableau 8C Tableau 8D 

The smallest uncircled element in Tableau 8D is Ctz = 35. Adjoining link 1-+ 2 to the current 
incomplete itinerary, we generate the itinerary 1-+ 2, 2-+ 4, 4-+ 3, which is not infeasible. Consequently, 
we circle Ctz and replace all other elements in the first row and all other elements in the second 
column of Tableau 8D, as well as the transposed element Czt, by 1000. The result is Tableau 8E. 

Continuing with the algorithm, we generate sequentially Tableaux 8F and 8G. The itinerary indi­
cated by the circled elements in Tableau 8G--namely, 1-+ 2, 2-+ 4, 4-+ 3, 3-+ 5, 5-+ l-is complete and 
is, therefore, the near-optimal one. Its total cost is 

z = 35 + 20 + 75 + 30 + 165 = 325 

See also Problem 9.17. 
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9.9 

2 3 4 5 2 3 4 5 

1000 @ 1000 1000 1000 1000 @ 1000 1000 1000 
2 1000 1000 1000 ® 1000 2 1000 1000 1000 ® 1000 
3 80 1000 1000 1000 75 3 1000 1000 1000 1000 @ 
4 1000 1000 @) 1000 1000 4 1000 1000 @) 1000 1000 
5 165 1000 1000 1000 1000 5 165 1000 1000 1000 1000 

Tab~u8E Tableau SF 

2 3 4 5 

1000 @ 1000 1000 1000 
2 1000 1000 1000 @ 1000 
3 1000 1000 1000 1000 @ 
4 1000 1000 @) 1~ 1000 
5 @ 1000 1000 1000 1000 

Tableau 8G 

Apply the nearest-neighbor method to Problem 9.6. 

The smallest entry in Tableau 6A, an initial cost matrix for this problem, is either C14 or c41. We 
arbitrarily circle C14 and then replace all other elements in the first row, all other elements in the fourth 
column, and C41, by a prohibitively large number. The result is Tableau 9A. 

2 3 4 2 3 4 

10000 10000 10000 ® 1 10000 10000 10000 ® 
2 65 10000 95 10000 2 10000 10000 95 10000 
3 53 95 10000 10000 3 ® 10000 10000 10000 
4 10000 10000 81 10000 4 10000 10000 81 10000 

Tableau 9A Tableau 9B 

Applying the nearest-neighbor algorithm to Tableau 9A, we obtain Tableau 9B with the partially 
completed itinerary 3-+1, 1-+4. The smallest entry in Tableau 9B is C43=8l. Adjoining link 4-+3 
to the current itinerary yields 4-+3, 3-+1, 1-+4, which is not feasible, since it is a circuit that omits 
city 2. Accordingly, we do not accept 4-+ 3 as part of the final itinerary, and we replace its cost, C43, 

with a large number. The result is Tableau 9C. 

2 3 4 2 3 4 

10000 10000 10000 ® 10000 10000 10000 ® 
2 10000 10000 95 10000 2 10000 10000 @ 10000 
3 ® 10000 10000 10000 3 ® 10000 10000 10000 
4 10000 10000 10000 10000 4 10000 ~ 10000 10000 

Tableau 9C Tableau 9D 

Continuing with the algorithm, we obtain after two more iterations Tableau 9D. The near-optimal 
solution suggested by the circled cost elements is 1-+ 4, 4-+ 2, 2-+ 3, 3-+ 1, with 

z = 37 + 10 ()()(} + 95 + 53 = 10 185 

This value of the objective function is prohibitively high; in this case, the "near-optimal" solution is 
actually far from optimal. 
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Supplementary Problems 

9.10 A manufacturer receives an order from a large city for six doubledecker buses, to be delivered two at a 
time over the next three months. Production data for the manufacturer are shown in Table 9-2. 

Table 9-2 

Months 

I 2 3 

Regular Production Capacity, 
units I 2 3 

Overtime Production Capacity, 
units 2 2 2 

Regular Production Cost, 
$1000/unit 35 43 40 

Overtime Production Cost, 
$1000/unit 39 47 45 

Buses can be delivered to the city at the end of the same month in which they are assembled, or they can 
be stored by the manufacturer, at a cost of $3000 per bus per month, for shipment during a later 
month. The manufacturer has no current inventory of these doubledecker buses and desires none after 
the completion of this contract. Determine a production schedule that will meet the city's demands at 
minimum cost to the manufacturer. 

9.11 A drug company estimates demand (in millions of doses) for one of its vaccines as follows: October, 7.1; 
November, 13.2; December, 12.8; January, 7.7; and February, 2.1. There is relatively little demand for 
the vaccine during the other months, and company policy for supplying these demands is to have 1 
million doses in inventory at the end of February. The vaccine takes four weeks to produce, so no 
doses are available for shipping during the month they are produced. Once the vaccine is ready, 
however, it can either be shipped immediately to customers or carried forward as inventory at a cost of 
10¢ per dose per month. Traditionally, the company produces the vaccine only between August and 
December inclusively. Any vaccine remaining in inventory from the previous year is destroyed on 
September 1. 

The company's production capacities (in millions of doses) and the anticipated production costs (in 
cents per dose) for each month of the upcoming production cycle are as follows: 

August September October November December 

Capacity 12.5 11.0 9.5 8.1 5.5 
Cost 63 68 75 52 48 

Determine a production schedule that meets all demands at minimum total cost. 

9.12 Determine a minimum-cost shipping schedule for the transshipment problem depicted in Fig. 9-3. 
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+20 

+20 -25 

+30 -35 

Fig. 9-3 

9.13 An automobile manufacturer has orders from locations 5, 6, and 7 for 75, 60, and 80 units, respectively, 
of a particular model. The production process consists in making the body either at location 1 or 2; 
shipping the body either to location 3 or 4, where it is assembled onto the rest of the car; and then 
shipping the entire unit to the waiting customer. Production costs per body are $533 at location 1 and 
$550 at location 2. Assembly costs at locations 3 and 4 are $2256 and $2239, respectively. Trans­
portation costs (in dollars) between locations are as follows: 

Locations 

2 

3 

45 
65 

4 

59 
52 

Locations 

3 
4 

5 

72 
81 

6 

65 
74 

7 

79 
63 

Production capacities at locations 1 and 2 are 150 and 170 bodies, respectively; locations 3 and 4 can 
assemble all the bodies forwarded to them. Determine a production and shipping schedule that will 
meet all demands at minimum cost. (Hint: Set up as a transshipment problem.) 

9.14 A rent-a-car company has an excess of cars in some cities and a shortage in others. In particular, cities 
1 and 2 have surpluses of 15 and 12 cars, respectively, while cities 3, 4, and 5 need 7, 18, and 9 additional 
cars, respectively. Cars can be shipped directly between locations, or they can be shipped through 
intermediate cities where the company has agencies. If shipping costs (in dollars per car) are as given in 
Tableau 14, determine a minimum-cost shipping schedule for the rent-a-car company. 

Cities 2 3 4 5 

7 12 25 65 
2 7 22 25 75 
3 12 22 17 28 
4 25 25 17 15 
5 65 75 28 15 

Tableau 14 

9.15 A fast-food chain wants to build four stores in the Chicago area. In the past, the chain has used six 
different construction companies, and, having been satisfied with each, has invited each to bid on each 
job. The final bids (in thousands of dollars) were as shown in Table 9-3. 
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Table 9-3 

Construction Companies 

1 2 3 4 5 6 

Store 1 85.3 88 87.5 82.4 89.1 86.7 
Store 2 78.9 77.4 77.4 76.5 79.3 78.3 
Store 3 82 81.3 82.4 80.6 83.5 81.7 
Store 4 84.3 84.6 86.2 83.3 84.4 85.5 

Since the fast-food chain wants to have each of the new stores ready as quickly as possible, it will award 
at most one job to a construction company. What assignment results in minimum total cost to the 
fast-food chain? 

9.16 Solve Problem 1.23. 

9.17 Find an exact solution to Problem 9.8 and compare it with the near-optimal itinerary obtained therein. 

9.18 The following tableau is the (unsymmetric) cost matrix for travel among a particular set of loca­
tions. Determine a minimum-cost, traveling salesman itinerary. 

Cities 

2 
3 
4 
5 

2 
5 

2 

3 
5 
3 

3 

8 
8 

6 
7 

4 

3 
2 
5 

6 

5 

4 
3 
1 
5 

9.19 Use the nearest-neighbor method to find a near-optimal itinerary for Problem 9.18. 

9.20 Show that the branching process for the traveling salesman problem creates two new problems, in one of 
which link p-+ q must be taken and in the other of which link p-+ q must not be taken. 

9.21 Show by means of an example that an optimal itinerary for the traveling salesman problem may not still 
be optimal when the constraint that each location be visited only once is dropped. 



Chapter 10 
Nonlinear Programming: 
Single-Variable Optimization 

THE PROBLEM 

A one-variable, unconstrained, nonlinear program has the form 

optimize: z = f(x) (10.1) 

where f(x) is a (nonlinear) function of the single variable x, and the search for the optimum (maxi­
mum or minimum) is conducted over the infinite interval (-oo, oo). If the search is restricted to a 
finite subinterval [a, b ], then the problem becomes 

optimize: z = f(x) 

subject to: as x s b 

which is a one-variable, constrained program. 

LOCAL AND GLOBAL OPTIMA 

(10.2) 

An objective function f(x) has a local (or relative) minimum at x0 if there exists a (small) interval 
centered at x0 such that f(x) 2: f(x0) for all x in this interval at which the function is defined. 
If f(x) 2: f(x0) for all x at which the function is defined, then the minimum at xo (besides being local) 
is a global (or absolute) minimum. Local and global maxima are defined similarly, in terms of the 
reversed inequality. 

Example 10.1 The function graphed in Fig. 10-1 is defined only on [a, b). It has relative minima at a, x2, and 
X4; relative maxima at x~, XJ, and b; a global minimum at x2; and global maxima at x, and b. 

z 

X 

Fig. 10-1 

Profram (10.1) seeks a global optimum; program (10.2) does too, insofar as it seeks the best of 
the local optima over [a, b]. It is possible that the objective function assumes even better values 
outsjde [a, b ], but these are not of interest. 

97 
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RESULTS FROM CALCULUS 

Theorem 10.1: If f(x) is continuous on the closed and bounded interval [a, b ], then f(x) has global 
optima (both a maximum and a minimum) on this interval. 

Theorem 10.2: If f(x) has a local optimum at xo and if f(x) is differentiable on a small interval 
centered at x0, then f'(xo) = 0. 

Theorem 10.3: If f(x) is twice-differentiable on a small interval centered at x0, and if f'(x0) = 0 
and f"(x0) > 0, then f(x) has a local minimum at x0• If instead f'(x0) = 0 and 
f"(xo) < 0, then f(x) has a local maximum at xo. 

It follows from the first two theorems that if f(x) is continuous on [a, b], then local and global optima 
for program (10.2) will occur among points where f'(x) does not exist, or among points where f'(x) = 0 
(generally called stationary or critical points), or among the endpoints x = a and x = b. (See 
Problems 10.1 through 10.3.) 

Since program (10.1) is not restricted to a closed and bounded interval, there are no endpoints to 
consider. Instead, the values of the objective function at the stationary points and at points where 
f'(x) does not exist are compared to the limiting values of f(x) as x ~ ±oo. It may be that neither 
limit exists (consider f(x) =sin x). But if either limit does exist-and we accept ±oo as a "limit" 
here-and yields the best value of f(x) (the largest for a maximization program or the smallest for 
a minimization program), then a global optimum for f(x) does not exist. If the best value occurs at 
one of the finite points, then this best value is the global optimum. (See Problem 10.4.) 

SEQUENTIAL-SEARCH TECHNIQUES 

In practice, locating optima by calculus is seldom fruitful: either the objective function is not 
known analytically, so that differentiation is impossible, or the stationary points cannot be obtained 
algebraically. (See Problem 10.5.) In such cases, numerical methods are used to approximate the 
location of (some) local optima to within an acceptable tolerance. 

Sequential-search techniques start with a finite interval in which the objective function is pre­
sumed unimodal; that is, the interval is presumed to include one and only one point at which f(x) has 
a local maximum or minimum. The techniques then systematically shrink the interval around the 
local optimum until the optimum is confined to within acceptable limits; this shrinking is effected by 
sequentially evaluating the objective function at selected points and then using the unimodal property 
to eliminate portions of the current interval. 

Example 10.2 Figure 10-2 exhibits the values of the objective function at the points X1 and xz. If a local 
minimum is known to be the only extremum in [a, b), then this minimum must be to the left of xz; for f(x) has 
begun to increase by that point, and, by the unimodal property, must continue to increase to the right of it. 
Hence, the subinterval (xz, b] can be discarded. 

If a local maximum is the sole extremum in [a, b ], then it must be located to the right of x~, and the 
subinterval [a, x1) can be discarded. 

a 

eliminate this interval 
if the search is for a 

local maximum 

Fig. 10-2 

Xz b 

eliminate this interval 
if the search is for a 

local minimum 

• 

• 

• 
Xi X2 XJ J 1- ~etain if the ~earch __J 

1s for a max1mum I-- retain if the search 
is for a minimum 

Fig. 10-3 
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Specific sequential searches are considered in the three sections that follow. 

TIIREE-POINT INTERVAL SEARCH 

The interval under consideration is divided into quarters and the objective function evaluated at 
the three equally spaced interior points. The interior point yielding the best value of the objective is 
determined (in case of a tie, arbitrarily choose one point), and the subinterval centered at this point 
and made up of two quarters of the current interval replaces the current interval. Including ties, 
there are 10 possible sampling patterns; one of them is illustrated in Fig. 10-3. (See Problems 10.6 
and 10.7.) 

The three-point interval search is the most efficient equally spaced search procedure in terms of 
achieving a prescribed tolerance with a minimum number of functional evaluations. It is also one of 
the easiest sequential searches to code for the computer. 

FIBONACCI SEARCH 

The Fibonacci sequence, {F,} == {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... }, forms the basis of the most 
efficient sequential-search technique. Each number in the sequence is obtained by adding together 
the two preceding numbers; exceptions are the first two numbers, Fo and Ft. which are both 1. 

The Fibonacci search is initialized by determining the smallest Fibonacci number that satisfies 
FNt: ~ b- a, where t: is a prescribed tolerance and [a, b] is the original interval of interest. 
Set t:' = (b- a)IFN. The first two points in the search are located FN- 1t:' units in from the end­
points of [a, b], where FN-1 is the Fibonacci number preceding FN. Successive points in the search 
are considered one at a time and are positioned F;t=' (j == N- 2, N- 3, ... , 2) units in from the 
newest endpoint of the current interval. (See Problem 10.8.) Observe that with the Fibonacci 
procedure we can state in advance the number of functional evaluations that will be required to 
achieve a certain accuracy; moreover, that number is independent of the particular unimodal 
function. 

GOLDEN-MEAN SEARCH 

A search nearly as efficient as the Fibonacci search is based on the number (VS- 1)/2 == 
0.6180 ···,known as the golden mean. The first two points of the search are located (0.6180)(b- a) 
units in from the endpoints of the initial interval [a, b]. Successive points are considered one at a 
time and are positioned 0.6180 L; units in from the newest endpoint of the current interval, where L; 
denotes the length of this interval. (See Problem 10.9.) 

CONVEX FUNCTIONS 

Search procedures are guaranteed to approximate global optima on a search interval only when 
the objective function is unimodal there. In practice, one usually does not know whether a 
particular objective function is unimodal over a specified interval. When a search procedure is 
applied in such a situation, there is no assurance it will uncover the desired global optimum. (See 
Problem 10.11.) Exceptions include programs that have convex or concave objective functions. 

A function f(x) is convex on an interval .? (finite or infinite) if for any two points Xt and xz in .? 
and for all o~ a~ 1, 

(10.3) 

If (10.3) holds with the inequality reversed, then f(x) is concave. Thus, the negative of a convex 
function is concave, and conversely. The graph of a convex function is shown in Fig. 10-4; a defining 
geometrical property is that the curve lies on or above any of its tangents. Convex functions and 
concave functions are unimodal. 
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Theorem 10.4: If f(x) is twice-differentiable on.~. then f(x) is convex on .1> if and only if f"(x)~O 
for all x in .1>. It is concave if and only if f"(x) ~ 0 for all x in .1>. 

Theorem 10.5: If f(x) is convex on .?, then any local minimum on .? is a global minimum on .?. If 
f(x) is concave on .?, then any local maximum on .? is a global maximum on .?. 

z 

I 
af(x!) + (1- a )f(x2) - T 

I 
f(ax, + (1- a )xz) - + -

I 
I 
I 
I 
I I 

f(xz) - T - -t - - -- - - - -
I I 
I I tangent 

ax 1 + (1-- a)xz X 

l<'ig. 10-4 

If (10.3) holds with strict inequality except at a = 0 and a = 1, the function is strictly con­
vex. Such a function has a strictly positive second derivative, and any local (and therefore global) 
minimum is unique. Analogous results hold for strictly concave functions. 

Solved Problems 

10.1 Maximize: z = x(S1r- x) on [0, 20]. 

Here f(x) = x(51T- x) is continuous, and f'(x) =51!"- 2x. With the derivative defined everywhere, 
the global maximum on (0, 20) occurs at an endpoint x = 0 or x = 20, or at a stationary point, where 
f'(x) = 0. We find x = 51!"/2 as the only stationary point in [0, 20]. Evaluating the objective function at 
each of these points, we obtain the table 

X 0 57T/2 20 

f(x) 0 61.69 -85.84 

from which we conclude that x* = 511"/2, with z * = 61.69. 

10.2 Maximize: z = lx2 - 81 on [-4, 4]. 

Here 
x s-Vs 

-Vssx sVs 
Vssx 
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is a continuous function, with 

( 

2x 
f'(x) = -~ 

x<-Vs 
-Vs<x<Vs 

VB<x 
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The derivative does not exist at x = ±VB, and it is zero at x = 0; all three points are in 
[ -4, 4). Evaluating the objective function at each of these points, and at the endpoints x = ±4, we 
generate the table 

X -Vs 0 4 

f(x) 0 8 0 8 

from which we conclude that the global maximum on [-4, 4) is z* = 8, which is assumed at the three 
points x* = ±4 and x* = 0. 

10.3 Minimize: z = f(x) on [0, 1], where 

/(x) = {! x=O 
O<x:Sl 

Theorem 10.1 does not apply if the function is discontinuous on the interval of interest, as it is 
here. In fact, no local or global minimum exists for this problem, since the function assumes arbitrarily 
small positive values but not the value zero. 

10.4 Maximize: z = xe-x2
• 

Here 

f'(x) = e-x2
_ 2x 2e-x2 = e-x2(1- 2x 2) 

which is defined for all x and which vanishes only at x = ±1/Vz. Since x is unrestricted, the values of 
the objective function at the stationary points, 

/(±1/v:i) = ±~ e- 112 = ±0.429 

must be compared to the limiting values of f(x) as x--+ ±co, which are both 0 in this case. Recording 
these results, 

X X....,. -oo -1!v'2 1!v'2 x-+oo 

f(x) 0 -0.429 0.429 0 

we see that a global maximum exists at x* = 1/V2 and is z* = 0.429. 

10.5 Minimize: z = x sin 4x on [0, 3]. 

Here f'(x) = sin 4x + 4x cos 4x, which is defined everywhere. The equation for the stationary 
points,· 

sin 4x + 4x cos 4x = 0 

cannot be solved algebraically, so that we are unable precisely to identify the stationary points in 
[0, 3). However, in the case of simple functions like this one, a good deal can be learned from a rough 
graph (Fig. 10-5). It is seen that the stationary points alternate with the zeros of f(x) (Rolle's theorem), 
which are the zeros of sin 4x. The global minimum of f(x) on [0, 3] must be attained in the subinterval 
[711'/8, 3], i.e., 

2.75sx*s3 

because that is the region in which the negative values of sin 4x are multiplied by the largest positive 
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values of x. Making the evaluations 

7'11' 
/(7'11'/8) = 8 (-1) = -2.75 

/(3) =' 3 sin 12 = -1.61 

we conclude that the global minimum is attained at the second local minimum of f(x), the one near 
x = 7'11'/8, and not at the endpoint x = 3. 

y 

y =sin 4x 

~.\!Jl ~ 4 2 
X 

Fig. 10-5 

10.6 Use the three-point interval search to approximate the location of the global minimum 
of f(x) = x sin 4x on [0, 3] to within e = 0.01. 

As a result of the graphical analysis done in Problem 10.5, we restrict attention to the subinterval 
[7'11'/8, 3]. The global minimum occurs in this subinterval and the function is unimodal there. 

First iteration. Dividing [7'11'/8, 3) into quarters, we take Xt = 2.8117, X2 = 2.8744, and XJ = 2.9372 as 
the three interior points and calculate 

/(xt) = Xt sin 4xt = 2.8117 sin 4(2.8117) = -2.7234 

f(x2) = x2 sin 4x2 = 2.8744 sin 4(2.8744) = -2.5197 

f(xJ) = X3 sin 4x:~ = 2.9372 sin 4(2.9372) = -2.1426 

Here, Xt is the interior point yielding the smallest value of f(x); so we take the subinterval centered at Xt. 

namely [7'11'/8, 2.8744), as the new interval of interest. 

Secorul iteration. Dividing [7'11'/8, 2.8744) into quarters, we have X4 = 2.7803, Xt = 2.8117, and xs = 
2.8430 as the three interior points of this new interval. Thus 

f(x4) = X4 sin 4x4 = 2.7803 sin 4(2.7803) = -2.7584 

f(xt) = -2.7234 (as before) 

f(xs) = xs sin 4xs = 2.8430 sin 4(2.8430) = -2.6439 

Of these interior points, X4 yields the smallest value of f(x); so we take the subinterval centered at it, 
[7'11'/8, 2.8117), as the new interval of interest. 

Third iteration. We divide [7'11'/8, 2.8117] into quarters, with X6 = 2.7646, X4 = 2.7803, and x, = 
2.7960 as the three interior points. Then 

f(x6) = X6 sin 4x6 = 2.7646 sin 4(2.7646) = -2.7591 

f(x4) = -2.7584 (as before) 

f(x,) = x, sin 4x, = 2.7960 sin 4(2./960) = -2.7465 
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Here, X6 is the interior point yielding the smallest value of the objective function; so the new interval of 
interest is the one centered at it, namely [77T/8, 2.7803]. 

Fourth iteration. We divide [77T/8, 2.7803] into quarters, with xs = 2.7567, X6 = 2.7646, and X9 = 
2.7724 as the three new interior points. Now 

f(xs) = xs sin 4xs = 2.7567 sin 4(2.7567) = -2.7554 

f(x6) = -2.7591 (as before) 

f(x9) = X9sin 4x9 = 2.7724 sin 4(2.7724) = -2.7602 

Since X9 is the interior point with the smallest value of f(x ), we take the subinterval centered at x9, 
namely [2.7646, 2.7803], as the new interval of interest. The midpoint of this interval, however, is within 
the prescribed tolerance, e = 0.01, of all other points in the interval; we therefore accept it as the 
location of the minimum. That is, 

x* = X9 = 2.7724 with z* = f(x9) = -2.7602 

10.7 Use the three-point interval search to approximate the location of the maximum of f(x) = 

x(S1r- x) on [0, 20] to within e = 1. 

Since f"(x) = -2 < 0 everywhere, it follows from Theorem 10.4 that f(x) is concave, hence unimodal, 
on [0, 20). Therefore, the three-point interval search is guaranteed to converge to the global maximum. 

First iteration. Dividing [0, 20) into quarters, we have x, = 5, X2 = 10, and X3 = 15 as the three interior 
points. Therefore 

/(Xt) = Xt(51T- Xt) = 5(51T- 5) = 53.54 

f(x2) = X2(51T- X2) = 10(57T- 10) = 57.08 

/(XJ) = XJ(51T- XJ) = 15(57T- 15) = 10.62 

Since x2 is the interior point generating the greatest value of the objective function, we take the interval 
[5, 15], centered at x2, as the new interval of interest. 

Secorul iteration. We divide [5, 15) into quarters, with X4 = 7.5, x2 = 10, and xs = 12.5 as the three 
interior points. So 

f(x4) = x4(51T- x4) = (7.5)(57T -7.5) = 61.56 

f(x2) = 57.08 (as before) 

f(xs) = Xs(51T- xs) = (12.5)(57T- 12.5) = 40.10 

As x4 is the interior point yielding the largest value of f(x), we take the interval [5, 10), centered at X4, as 
the new interval of interest. 

Third iteration. We divide [5, 10) into quarters, with X6 = 6.25, X4 = 7.5, and x, = 8.75 as the new 
interior points. So 

f(x6) = (6.25)(57T- 6.25) = 59.11 

f(x4) = 61.56 (as before) 

f(x,) = (8.75)(57T- 8.75) = 60.88 

As X4 yields the largest value of f(x), we take the interval [6.25, 8.75], centered at x4, as the new interval 
of interest. 

Fourth itertdion. Dividing [6.25, 8.75) into quarters, we generate xs = 6.875, x4 = 7.5, and x9 = 

8.125 as the new interior points. Thus 

/(xs) = (6.875)(57T- 6.875) = 60.73 

f(x4) = 61.56 (as before) 

f(x9) = (8.125)(57T- 8.125) = 61.61 

Now X9 is the interior point yielding the largest value of the objective function, so we take the 
subinterval centered at X9, namely [7.5, 8.75], as the new interval for consideration. The midpoint of 
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this interval, however, is within the prescribed tolerance, e = 1, of all other points in the interval; hence 
we take 

x* = X9 = 8.125 with z* = f(x9) = 61.61 

10.8 Redo Problem 10.7 using the Fibonacci search. 

Initiol points. The first Fibonacci number such that FN(1) ~ 20-0 is F, = 21. We set N = 7, 

e' = !!-=..~ = 20 - 0 
= 0 9524 

FN 21 . 

and then position the first two points in the search 

F6e' = 13(0.9524) = 12.38 units 

in from each endpoint. Consequently, 

Xt = 0 + 12.38 = 12.38 Xz = 20- 12.38 = 7.62 

f(x,) = (12.38)(51T- 12.38) = 41.20 

f(xz) = (7 .62)(51T- 7 .62) = 61.63 

which are plotted in Fig. 10-6(a). Using the unimodal property, we conclude that the maximum must 
occur to the left of 12.38, and we reduce the interval of interest to [0, 12.38). 

First iteration. The next-lower Fibonacci number (F6 was the last one used) is Fs = 8; so the next point 
in the search is positioned 

Fse' = 8(0.9524) = 7.619 units 

in from the newest endpoint, 12.38. Thus 

X3 = 12.38-7.619 = 4.761 

f(xJ) = (4. 761)(51T- 4.761) = 52.12 

Adding this point to the retained portion of Fig. 10-6(a ), we generate Fig. 10-6(b ), from which we 
conclude that the maximum must occur in the new interval of interest [4.761, 12.38]. 

Secorul iteration. The next-lower Fibonacci number now is F4 = 5. Thus 

X4 = 4.761 + F4e' = 4.761 + 5(0.9524) = 9.523 

f(x4) = (9.523)(51T -- 9.523) = 58.90 

Adding this point to the retained portion of Fig. 10-6(b ), we obtain Fig. 10-6(c ), from which we conclude 
that the new interval of interest is [4.761, 9.523] 

Third iteration. The next-lower Fibonacci number now is FJ = 3. Hence 

Xs = 9.523- 3(0.9524) = 6.666 

f(xs) = (6.666)(51T- 6.666) = 60.27 

Adding this point to the retained portion of Fig. 10-6(c ), we obtain Fig. 10-6(d), and it follows from the 
unimodal property that the new interval of interest is [6.666, 9.523]. 

Fourth iteration. The next-lower Fibonacci number now is Fz = 2. Hence 

X6 = 6.666 + 2(0.9524) = 8.571 

f(x6) = (8.571)(51T- 8.571) = 61.17 

Adding this point to the retained portion of Fig. 10-6(d), we obtain Fig. 10-6(e), from which we conclude 
that [6.666, 8.571) is the new interval of interest. The midpoint of this interval, however, is within e = 
1 (in fact, within e' = 0.9524) of every other point of the interval. (Theoretically, the midpoint should 
coincide with xz; the small apparent discrepancy arises from roundoff.) We therefore accept X2 as the 
location of the maximum, i.e., 

x* = xz= 7.62 with z* = f(xz)= 61.63 



mdh0312
Typewritten Text

mdh0312
Typewritten Text

mdh0312
Typewritten Text
Page 105 missing



106 MATHEMATICAL PROGRAMMING [PART I 

in from each endpoint. Thus 

Xt = 0 + 12.36 = 12.36 X2 = 20- 12.36 = 7.64 

f(x,) = (12.36)(51T- 12.36) = 41.38 

f(x2) = (7.64)(51T -7.64) = 61.64 

The points (x,,f(x,)) and (x2,f(x2)) are very close to the points shown in Fig. 10-6(a). It follows from 
the unimodal property that the maximum must occur to the left of 12.36; hence we retain [0, 12.36] as the 
new interval of interest. 

First iteration. The new interval has length L2 = 12.36, so the next point in the search is positioned 
0.6180L2 units in from the newest endpoint. 'Therefore, 

X3 = 12.36 -- (0.6180)(12.36) = 4.722 

f(xJ) = (4.722)(51T- 4.722) = 51.88 

When this new point is added, Fig. 10-6(b) applies, and we determine [4.722, 12.36) as the new interval of 
interest. 

Second iteration. LJ = 12.36- 4. 722 = 7.638; thus 

X4 = 4.722+ (0.6180)(7.638) = 9.442 

f(x4) = (9.442)(51T- 9.442) = 59.16 

Now the pattern is that of Fig. 10-6(c), from which we conclude that [4.722, 9.442) is the new interval of 
interest. 

Third iteration. L4 = 9.442-4.722 = 4.720; thus 

Xs = 9.442 -· (0.6180)(4.720) = 6.525 

f(xs) = (6.525)(51T- 6.525) = 59.92 

Now the pattern is that of Fig. 10-6(d), from which we conclude that [6.525, 9.442) is the new interval of 
interest. 

Fourth iteration. Ls = 9.442- 6.525 = 2.917; hence 

X6 = 6.525 + (0.6180)(2.917) = 8.328 

f(x6) = (8.328)(51T - 8.328) = 61.46 

With this new point, we reach the pattern of Fig. 10-6(e ), and find [6.525, 8.328) as the new interval of 
interest. Notice that this new interval is of length less than 2e = 2, but that the included sample point, 
x1, is not within e of all other points in the interval. Therefore, another iteration is required. 

Fifth iteration. L6 = 8.328- 6.525 = 1.803; therefore 

X7 = 8.328- (0.6180)(1.803) = 7.214 

f(x7) = (7.214)(51T- 7.214) = 61.28 

This new point determines [x1, X6] = [7.214, 8.328] as the new interval of interest. Now, however, the 
interior point X2 = 7.64 is within e = 1 of all other points in the interval; so we take it as the location of 
the maximum. That is, 

x* = x2= 7.64 with z * = !(x2) = 61.64 

10.10 Compare the efficiencies of the three search methods in locating the maximum of x(57T- x) on 
[0, 20]. 

Each method succeeded in approximating the location of the maximum, x* = 51T/2 = 7.854, to 
within e = 1, as required. The Fibonacci search was the most efficient (see Problem 10.8), achiev­
ing the desired accuracy with six functional evaluations. The three-point interval search (see Problem 
10.7) and the golden-mean search (see Problem 10.9) required nine and seven functional evaluations, 
respectively. 
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IO.ll Redo Problem 10.6 without first constricting the interval [0, 3] to a subinterval on which the 
function is unimodal. Discuss the result. 

t 

Applying the three-point interval search to f(x) = x sin 4x on (0, 3] directly, we generate sequen­
tially the entries in Table 10-1. It follows that 

x* = 1.231 with z * = f(x *) = -1.20354 

Table 10·1 

Current Interval Interior Points f(x) = x sin 4x 

a b c /(a) /(b) /(c) 

(0, 3] 0.75 1.5 2.25 0.1058 -0.4191 0.9273 
[0. 75, 2.25] 1.125 1.5 1.875 -1.100 -0.4191 1.759 
[0.75, 1.5) 0.9375 1.125 1.313 -0.5358 -1.100 -1.126 
(1.125, 1.5] 1.219 1.313 1.406 -1.203 -1.126 -0.8611 
[1.125, 1.313] 1.172 1.219 1.266 -1.172 -1.203 -1.189 
[ 1.172, 1.266] 1.196 1.219 1.243 -1.193 -1.203 -1.201 
[1.196, 1.243] 1.208 1.219 1.231 -1.199 -1.20272 -1.20354 
(1.219, 1.243] 1.225 1.231 1.237 -1.20350 -1.20354 -1.2028 
[ 1.225, 1.237] 

It is apparent from Fig. 10-5 that the search procedure has converged to the local minimum near 
3'11/8, and not to the global minimum on (0, 3] that was found in Problem 10.6. A similar result would 
have occurred had we applied the Fibonacci search or golden-mean search to the entire interval (0, 3]. 
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10.12 Derive the Fibonacci search algorithm. 

If the last interval under consideration, _g:N-1, is to be as large as possible yet contain an approxi­
mation to a local optimum good to within e', then the search points used to generate this interval must be 
positioned as shown by the arrows in Fig. 10-7(a). The midpoint of this interval is the final approxi­
mation. Now, ,jN-1 is itself obtained from a larger interval, ,jN-2, by elimination of a portion of the 
larger interval, based on the unimodal property. To imply Fig. 10-7(a) for an arbitrary unimodal func­
tion, ,jN-2 must have the symmetrical form exhibited in Fig. 10-7(b), where again the arrows indicate the 
locations of search points or endpoints of the original interval. Either the left-hand one-third or the 
right-hand one-third of Fig. 10-7(b) is eliminated to yield Fig. 10-7(a). Figure 10-7(b), however, is itself 
the result of adding one search point. Before this point was added, ,jN-2 must have had the form of Fig. 
10-7(c) or that of Fig. 10-7(d). 

Either possibility for ,jN-2 is obtained from a larger interval, ,jN-3, by elimination of a portion of this 
larger interval, based on the unimodal property. To imply Fig. 10-7(c) or 10-7(d), ,jN-3 had to have the 
form exhibited in Fig. 10-7(e). Either the left-hand subinterval or the right-hand subinterval of Fig. 
10-7(e) is eliminated to generate ,jN-2· Figure 10-7(e), however, is the result of adding one search 
point. Before this point was added, ,jN-3 must have had the form of Fig. 10-7(/) or that of Fig. 10-7(g). 

Continuing in this manner and denoting the length of ,jj by Lj, we find that LN-1 = 2e', LN-z = 
3e', LN-3 = 5e', LN-4 = 8e', LN-s = 13e', and so on. Since the coefficients are part of the Fibonacci 
sequence, we have 

(1) 

But N is chosen such that FNe' = b -a. Therefore, L1 is the initial interval, and we have generated (in 
reverse order) the steps of the Fibonacci search. 

10.13 Derive the golden-mean search algorithm. 

From (1) of Problem 10.12, L1 = FNE' and L2= FN-1e'. Then, if N is large, Problem 10.26 gives 

L2- FN-1 . r FN-1- 0 6180 
L1 - FN-"" ,J!!! FN - . . •. 

so that L2 = 0.6180L1. Identical reasoning shows that, provided N is large enough, the same ap­
proximation is valid for any two successive intervals in the Fibonacci search, i.e., L; = 0.6180L;-1, which 
is the defining equation for the golden-mean search. 

Supplementary Problems 

10.14 Find all local and global optima for f(x) o= x 3
- 6x2 + 9x + 6 on (a) [0, 3), (b) [1, 4), (c) [ -1, 5). 

10.15 Find all local and global optima for f(x) o= x 4
- 4x 3 + 6x 2

- 4x + 1 on (a) [0, 3), (b) [0, 2), (c) [0, oo). 

10.16 Find all local and global optima for f(x) = x + x-• on (a) (0, oo), (b) (-oo, 0), (c) [5, 10). (Hint: In parts 
(a) and (b), x = 0 is handled like an infinite endpoint.) 

10.17 Show that f(x) = x 3
- 6x2 + 9x + 6 is strictly concave on (-oo, 2) and strictly convex on (2, co). 

10.18 Determine intervals on which f(x) = x + 4x-• is concave or convex. 

10.19 Use the three-point interval search to approximate to within e = 0.1 the location of the global minimum 
on (0, 2] of the function of Problem 10.18. (Hint: Proceed as if the interval were [0, 2).) 
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10.20 Approximate the location of the global maximum on [0, 1r] of f(x) = x 2 sin x, using a three-point search 
of the unrestricted interval with five functional evaluations (i.e., five search points). How good is this 
approximation? 

10.21 Redo Problem 10.19 with a Fibonacci search. 

10.22 Redo Problem 10.20 with a Fibonacci search. (Hint: A total of five search points requires that the first 
two be placed Fse' in from the endpoints of the original interval. Thus N = 6 for determining e'.) 

10.23 Redo Problem 10.19 with a golden-mean search. 

10.24 Redo Problem 10.20 with a golden-mean search. 

10.25 Show that the nth term of the Fibonacci sequence is 

(Hint: Verify that the given expression satisfies the appropriate recursion relation and initial con­
ditions.) 

10.26 From Problem 10.25, derive 

lim FN- 1 = ( 1 + vs)- 1 
= 0.6180 ... 

N-~ FN 2 



Chapter 11 
Nonlinear Programming: Multivariable 
Optimization without Constraints 

The present chapter will very largely consist in a generalization of the results of Chapter 10 to the 
case of more than one variable. However, only the analog to (10.1), 

optimize: z =/(X) where X= [xh x 2, ••• , xnY (11.1) 

will be treated, and not the analog to (10.2). Moreover, we shall always suppose the optimization in 
(11.1) to be a maximization; all results will apply to a minimization program if /(X) is replaced by 
- f(X). See Problems 11.2 and 11.3. 

LOCAL AND GLOBAL MAXIMA 

Definition: An e-neighborhood (e > 0) around X is the set of all vectors X such that 

(X- Xf (X- X)= (xi- .XI)2 + (xz- Xz)2 + · · · + (xn- Xn)2 ::5 e 2 

In geometrical terms, an e-neighborhood around X is the interior and boundary of an n-dimensional 
sphere of radius e centered at X. 

An objective function /(X) has a local maximum at X if there exists an e-neighborhood around X 
such that /(X) ::5 /(X) for all X in this e-neighborhood at which the function is defined. If the 
condition is met for every positive e (no matter how large), then /(X) has a global maximum at X. 

GRADIENT VECTOR AND HESSIAN MATRIX 

The gradient vector Vf associated with a function f(x~> x 2, ••• , Xn) having first partial derivatives is 
defined by 

Vf = [~aa(_, aat, ... , :t ]r 
XI Xz vXn 

The notation Vflx signifies the value of the gradient at X. For small displacements from X in various 
directions, the direction of maximum increase in /(X) is the direction of the vector Vflx. (See 
Problem 11.7.) 

Example 11.1 For f(x,, x2, XJ) = 3xh2- xh~. with X= [1, 2, 3V, 

Vf = [ 3xr6~~;2x~] whence Vflx = [3(1)~~~~~)(W] = [- :~5] 
- 3xh~ - 3(2)2(3)2 -108 

Therefore, at [1, 2, 3]r, the function increases most rapidly in the direction of [12, -105, -108]r. 

The Hessian matrix associated with a function f(x~> x 2, ••• , Xn) that has second partial derivatives 
is 

H,= [a:;¥xJ (i,j = 1, 2, ... , n) 

The notation H1lx signifies the value of the Hessian matrix at X. In preparation for Theorems 11.4 
and 11.5 below, we shall need the following: 

110 
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Definition: An n x n symmetric matrix A (one such that A= AT) is negative definite (negative 
semi-definite) if xr AX is negative (nonpositive) for every n-dimensional vector X~ 0. 

Theorem 11.1: Let A=[aii] be ann x n symmetric matrix, and define the determinants 

au a12 a13 
A3 = + a21 azz a23 

a31 a32 a33 
A,.= (-1)"-1 det A 

Then A is negative definite if and only if At. A 2, ... , A,. are all negative; A is nega­
tive semi-definite if and only if At. A 2, ... , A, (r < n) are all negative and the 
remaining A's are all zero. 

Example 11.2 For the function of Example 11.1, 

H1 =[:;~ -6~3 -6~2x3] whence Htlt=[ 1

0~ -~4 -~os] 
0 -6x2X3 -6xh3 -108 -72 

For H1!t, A, = 12 > 0, so that H1 is not negative definite, or even negative semi-definite, at X. 

RESULTS FROM CALCULUS 

Theorem 11.2: If /(X) is continuous on a closed and bounded region, then f(X) has a global 
maximum (and also a global minimum) on that region. 

Theorem 11.3: If /(X) has a local maximum (or a local minimum) at X* and if Vf exists on some 
e-neighborhood around X*, then Vflx• = 0. 

Theorem 11.4: If /(X) has second partial derivatives on an e-neighborhood around X*, and if 
Vflx· = 0 and H11x· is negative definite, then /(X) has a local maximum at X*. 

It follows from Theorems 11.2 and 11.3 that a continuous f(X) assumes its global maximum 
among those points at which Vf does not exist or among those points at which Vf = 0 (stationary 
points )-unless the function assumes even larger values as xrx ~ oo. In the latter case, no global 
maximum exists. (See Problem 11.1.) 

Analytical solutions based on calculus are even harder to obtain for multivariable programs than for 
single-variable programs, and so, once again, numerical methods are used to approximate (local) maxima 
to within prescribed tolerances. 

THE METHOD OF STEEPEST ASCENT 

Choose an initial vector Xo, making use of any prior information about where the desired global 
maximum might be found. Then determine vectors x~. X2, X3, ... by the iterative relation 

(11.2) 

Here At is a positive scalar which maximizes f(Xk +A Vflxk); this single-variable program is solved by 
the methods of Chapter 10. It is best if .A! represents a global maximum; however, a local maxi­
mum will do. The iterative process terminates if and when the difference between the values of the 
objective function at two successive X-vectors is smaller than a prescribed tolerance. The last­
computed X-vector becomes the final approximation to X*. (See Problems 11.4 and 11.5.) 
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THE NEWTON-RAPHSON METHOD 

Choose an initial vector Xo, as in the method of steepest ascent. Vectors x~. X2, X3, ••• then are 
determined iteratively by 

Xk+l = Xk ·-(H,Ixkt 1V/Ixk (11.3) 

The stopping rule is the same as for the method of steepest ascent. (See Problems 11.8 and 11.9.) 
The Newton-Raphson method will converge to a local maximum if H1 is negative definite on 

some e-neighborhood around the maximum and if X0 lies in that e-neighborhood. 

Remark 1: If H1 is negative definite, Hj1 exists and is negative definite. 

If Xo is not chosen correctly, the method may converge to a local minimum (see Problem 11.10) or it 
may not converge at all (see Problem 11.9). In either case, the iterative process is terminated and 
then begun anew with a better initial approximation. 

THE FLETCHER-POWELL METHOD 

This method, an eight-step algorithm, is begun by choosing an initial vector X and prescribing a 
tolerance e, and by setting an n x n matrix G equal to the identity matrix. Both X and G are 
continually updated until successive values of the objective function differ by less than e, whereupon 
the last value of X is taken as X*. 

STEP 1 Evaluate a =/(X) and B = Vflx. 

STEP 2 Determine A* such that /(X+ A GB) is maximized when A = A*. Set D = A *GB. 

STEP 3 Designate X+ D as the updated value of X. 

STEP 4 Calculate f3 = f(X) for the updated value of X. If f3- a < e, go to Step 5; if not, go to 
Step 6. 

STEP 5 Set X* = X, /(X*)= /3, and stop. 

STEP 6 Evaluate C = Vflx for the updated vector X, and set Y = B- C. 

STEP 7 Calculate the n x n matrices 

L= (o~v)oor and 

STEP 8 Designate G + L + M as the updated value of G. Set a equal to the current value of /3, B 
equal to the current value of C, and return to Step 2. 

HOOKE-JEEVES' PATTERN SEARCH 

This method is a direct-search algorithm that utilizes exploratory moves, which determine an 
appropriate direction, and pattern moves, which accelerate the search. The me~hod is begun by 
choosing an initial vector, B = [b~. b2, ••• , bnf, and a step size, h. 

STEP 1 Exploratory moves around Bare made by perturbing the components of B, in sequence, by 
±h units. If either perturbation improves (i.e., increases) the value of the objective 
function beyond the current value, the initial value being /(B), the perturbed value of that 
component is retained; otherwise the original value of the component is kept. After each 
component has been tested in turn, the resulting vector is denoted by C. If C = B, go to 
Step 2; otherwise go to Step 3. 

STEP 2 B is the location of the maximum to within a tolerance of h. Either h is reduced and Step 
1 repeated, or the search is terminated with X*= B. 
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STEP 3 Make a pattern move to a temporary vector T = 2C- B. (T is reached by moving from B 
to C and continuing for an equal distance in the same direction.) 

STEP 4 Make exploratory moves around T similar to the ones around B described in Step 1. 
Call the resulting vector S. If S = T, go to Step 5; otherwise go to Step 6. 

STEP 5 Set B = C and return to Step 1. 

STEP 6 Set B = C, C = S, and return to Step 3. 

A MODIFIED PATTERN SEARCH 

Hooke-Jeeves' pattern search terminates when no perturbation of any one component of B leads 
to an improvement in the objective function. Occasionally this termination is premature, in that 
perturbations of two or more of the components simultaneously may lead to an improvement in the 
objective function. Simultaneous perturbations can be included in the method by modifying Step 2 
as follows: 

STEP 2' Conduct an exhaustive search over the surface of the hypercube centered at B by 
considering all possible perturbations of the components of B by kh units, where k = 
-1, 0, 1. For a vector of n components, there are 3"- 1 perturbations to consider. As 
soon as an improvement is realized, terminate the exhaustive search, set the improved 
vector equal to B, and return to Step 1. If no improvement is realized, B is the location of 
the maximum to within a tolerance of h. Either h is reduced and Step 1 repeated, or the 
search is terminated with X* = B. 

CHOICE OF AN INITIAL APPROXIMATION 

Each numerical method starts with a first approximation to the desired global maximum. At 
times, such an approximation is apparent from physical or geometrical aspects of the problem. (See 
Problem 11.12.) In other cases, a random number generator is used to provide different values for 
X. Then f(X) is calculated for each randomly chosen X, and that X which yields the best value of 
the objective function is taken as the initial approximation. Even this random sampling procedure 
implies an initial guess of the location of the maximum, in that the random numbers must be 
normalized so as to lie in some fixed interval. (See Problem 11.4.) 

CONCAVE FUNCTIONS 

There is no guarantee that a numerical method will uncover a global maximum. It may converge 
to merely a local maximum or, worse yet, may not converge at all. Exceptions include programs 
having concave objective functions. 

A function f(X) is convex on a convex region ~ (see Chapter 3) if for any two vectors X1 and Xz 
in ~ and for all 0 ::5 a ::5 1, 

/(aX1 + (1- a )X2) ::5 af(XJ) + (1- a)f(Xz) (11.4) 

[compare (10.3)]. A function is concave on ~ if and only if its negative is convex on ~- The 
convex region ~ may be finite or infinite. 

Theorem 11.5: If f(X) has second partial derivatives on ~.then f(X) is concave on~ if and only if its 
Hessian matrix H1 is negative semi-definite for all X in ~-

Theorem 11.6: If f(X) is concave on~. then any local maximum on ~ is a global maximum on ~­

These two theorems imply that, if H1 is negative semi-definite everywhere, then any local maxi­
mum yields a solution to program (11.1). If H1 is negative definite everywhere, then /(X) is strictly 
concave (everywhere), and the solution to program (11.1) is unique. 
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Solved Problems 

11.1 Maximize: z = x.(x2 - 1) + x3(xi- 3). 

Here f(x,, x2, x3) = x,(x2- 1) + XJ(x~ -- 3). The gradient vector, Vf = [x2- 1, x,, 3x~- 3]T, exists 
everywhere and is zero only at 

x, = [o, 1, 1V and x2 = [O, 1, -1V 

We have /(X,)= -2 and f(X2) = 2. But f(xt, x2, XJ) becomes arbitrarily large as XJ (for instance) does 
so; hence no global maximum exists. The vector X2 is not even the site of a local maximum; rather, it is a 
saddle point, as is X,. 

11.2 Minimize: z = (x.- v5)2+ (xz-1TY+ 10. 

Multiplying this objective function by -1, we obtain the equivalent maximization program 

maximize: z = - (xt - Vsf- (x2- 1T )2- 10 

for which Vz = -2[x,- '\15, x2- 1TV. Thus there is a single stationary point, x, = '\15, x2 = 1T, at 
which z = -10. Now, as x~+x~-+oo, z becomes arbitrarily small; consequently, z• = -10 is the 
global maximum, and z • = + 10 is the global minimum for the original minimization program. The 
minimum is, of course, also assumed at x1 = V5 = 2.2361, x~ = 1T = 3.1416. 

11.3 Minimize: z = sin x1x2 - cos (x 1 - x2). 

Multiplying the objective function by --1, we obtain the equivalent maximization program 

maximize: z = -sin X1X2 +cos (x,- x2) 

Here f(x~, x2) = -sin X1X2 +cos (x,- x2) and 

Vf = [-·x2 cos X1X2- s~n (x,- x2)] 
--x, cos X1X2 + sm (x,- x2) 

which exists everywhere. Stationary points therefore satisfy 

-x2 cos X1Xz- sin (x,- x2) = 0 
-x, cos X1Xz +sin (x,- x2) = 0 

(1) 

Although a complete solution to system (1) cannot be obtained algebraically, it is possible to find a 
partial solution that suffices for the present program. Observe first of all that, for all x, and x2, 

if(x~, x2)i :s; !sin x,x2l + Ieos (x,- x2)i :s; 1 + 1 = 2 

Hence, if a stationary point can be found at which f(x,, x2) = 2, that point is necessarily the site of a 
global maximum. Now, it is clear that (1) will be satisfied if cos X1X2 and sin (x,- x2) separately vanish, 
i.e., if 

X1X2= (k +~)1T and 

where k and n are integers. Trying k = I and n = 0, we find that 

( 
f37T f37i) . 31T 

f 'IT· 'rz = -sm-:z+cosO= 2 

and our search is over. The original minimization program then has the solution z• = -2, attained 
at x T = x ~ = ~ (and elsewhere). 

11.4 Use the method of steepest ascent to 

minimize: z =: (x1 - VS)2 + (x2 - 1T)2 + 10 

Going over to the equivalent program 

maximize: z = - (x, - VSf- (x2 - 1T )
2- 10 (1) 
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X1 

X2 

z 

we require a starting approximate solution, which we obtain by a random sampling of the objective 
function over the region -10 :s; x~, X2 :s; 10. The sample points and corresponding z-values are shown in 
the table below. The maximum z-entry is -36.58, occurring at Xo = [6.597, 5.891V, which we take as 
the initial approximation to x•. The gradient of the objective function for program (1) is 

Vf = [-2(x,- VS)] 
-2(x2-1r) 

-8.537 -0.9198 9.201 9.250 6.597 8.411 8.202 -9.173 -9.337 

-1.099 -8.005 -2.524 7.546 5.891 -9.945 -5.709 -6.914 8.163 

-144.0 -144.2 -90.61 -78.59 -36.58 -219.4 -123.9 -241.3 -169.2 

First iteration. 

X +A Vfl = [6.597] + A[-2(6.597- VS)l = [6.597- 8.722A] 0 
Xo 5.891 -2(5.891- 1r) J 5.891- 5.499A 

/(Xo +A Vf!Xo) = -(6.597- 8.722A- VSf- (5.891- 5.499A- 1rf -10 

= -106.3A 2 + 106.3A- 36.58 

-5.794 

-0.0210 

-84.48 

Using the analytical methods described in Chapter 10, we determine that this function of A assumes a 
(global) maximum at A~ = 0.5. Thus, 

X,= Xo +A~ Vf!Xo = [6.597- 8.722(0.5)] = [2.236] 
5.891- 5.499(0.5) 3.142 

with /(X,)= -10.00. Since the difference between f(Xo) = -36.58 and /(X,)= -10.00 is significant, we 
continue iterating. 

Second iteration. 

[
2.236] r-2(2.236- vfs)] [2.236 + 0.000 I A] 

X,+ A Vflx1 = 3.142 +A -2(3.142- 1r) = 3.142- 0.0008A 

/(X,+ A Vflx1) = -(2.236+ O.OOOU- vtsf- (3.142- 0.0008A -?Tf-10 

= -(6.500A 2-6.382A + 108)10-7 

Using the analytical methods described in Chapter 10, we find that this function of A has a (global) 
maximum at A! = 0.4909. Thus, 

X =X +A* Vfl = [2.236+ 0.0001(0.4909)] = [2.236] 2 
I I X! 3.142- 0.0008(0.4909) 3.142 

Since x, = X2 (to four significant figures), we accept x• = [2.236, 3.142JT, with z• = -10.00, as the 
solution to program (1 ). The solution to the original minimization program is then x• = 
[2.236, 3.142JT, with z• = +10.00. Compare this with the results obtained in Problem 11.2. 

11.5 Use the method of steepest ascent to 

maximize: z =-sin x 1x 2 + cos (x1 - x2) 

to within a tolerance of 0.05. 

Here 

Vf= [-x2cosx,x2-sin(x,-x2)] 
-x, cos X1X2 +sin (x,- x2) 

From a random number search oftheregion -1 :5x~, x2 :s; 1, we get Xo = [-0.7548, 0.5303JT, with f(Xo} = 
0.6715. 
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First iteration. 

Vfl = [-0.5303cos [(-0.754S)(0.5303)]- sin (-0.7548- 0.5303)] = [ 0.4711] 
Xo 0.7548 cos [(-0.7548)(0.5303)] +sin (-0.7548- 0.5303) -0.2643 

Xo AVfl =[-0.7548] A[ 0.4711]=[-0.7548+0.4711A] 
+ Xo 0.5303 + -0.2643 0.5303- 0.2643A 

f(Xo +A Vf!Xo) =-sin [(-0.7548 + 0.4711A)(0.5303- 0.2643A)] 

+ cos[(-0.7548+ 0.4711A)- (0.5303- 0.2643A)] 

=-sin (-0.4003 + 0.4493A- 0.1245A 2) +cos (-1.285 + 0.7354A) 

Using the golden-mean search on [0, 8), we determine that this function of A has a maximum at A o = 1.7. 
Thus, 

X = Xo +A* Vfl = [-0.7548 + 0.4711(1.7)] = [0.04607] 
I O X() 0.5303- 0.2643(1.7) 0.08099 

with !(X1) = 0.9957. Since 

/(X1)- /(Xo) = 0.9957- 0.6715 = 0.3242 > 0.05 

we continue iterating. 

Second iteration. 

[
-0.08099 cos [(0.04607)(0.08099)]- sin (0.04607- 0.08099)] 

Vflx1 = -0.04607 cos [(0.04607)(0.08099)] +sin (0.04607- 0.08099) 

[
-0.04608] 

= -0.08098 

[
0 .04607 - 0.04608 A ] 

X1+A Vflx1 = 0.08099-0.08098A 

/(X1 +A Vflx1) = -sin [(0.04607- 0.04608A)(0.08099- 0.08098A)) 

+cos [(0.04607- 0.04608A)- (0.08099- 0.08098A )) 

=-sin (0.003731- 0.007463A + 0.003732A 2
) +cos (-0.03492 + 0.03490A) 

Using the golden-mean search on [0, 8], we determine that this function of A has a maximum at A i = 1. 
Thus, 

* [0.04607- 0.04608(1)] [0.0000] 
X2 = X1 +A 1 Vflx1 = 0.08099- 0.08098(1) = 0.0000 

with f(X2) = 1.000. Since 

f(X2)- /(XI)= 1.000- 0.9957 = 0.0043 < 0.05 

we take X* = X2 and z * = 1.000. 

11.6 Is the maximum found in Problem 11.5 a global maximum? 

For the objective function f(xl, x2) = -sin X1X2 +cos (x1- x2), the Hessian matrix is not negative 
semi-definite everywhere. Indeed, 

a2f 2 • ( ) 
~a = x2 sm X1X2- cos x1- x2 X1 

and the right-hand side is positive for X1 "" xz = V 'TT'/2. Thus /(x1, x2) is not concave everywhere, and 
the question remains open. Referring to Problem 11.3, we see that the global maximum actually 
is z * = 2, so that z * = 1.000 must be only a local maximum. 

11.7 Derive the method of steepest ascent. 

For any fixed vector X and any unit vector U, the directional derivative, 
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Dvf(X) = Vflx · U 

gives the rate of change of /(X) at X in the direction of U. Since 

Vf. u = lVII lUI cos (} = IV/I cos (} 
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the greatest increase in /(X) occurs when (} = 0, i.e., when U is in the same direction as Vf. Therefore, 
any (small) movement from X in the direction of Vflx will, initially, increase the function over f(X) as 
rapidly as possible. The vector A Vflx represents a displacement of this kind. The best value of A is 
the one that maximizes f(X +A Vflx), the value of the function after the displacement. 

11.8 Use the Newton-Raphson method to 

maximize: z = -(x.- v5)2- (xz- 1T)2- 10 

to within a tolerance of 0.05. 

From Problem 11.4 we take the initial approximation X0 = [6.597, 5.891)T, with /(Xo) = -36.58. 
The gradient vector, Hessian matrix, and inverse Hessian matrix for this objective function are, respectively, 

[-2 0] 
H, = 0 -2 

H-' = [-0.5 0 ] 
I 0 -0.5 

for all x, and x2. 

First Ueration. 

Vfl = r-2(6.597 _ Vs)J = r-8.722J 
xo -2(5.891- 1T) -5.499 

x, = Xo- (H,Ixur' Vflxu 

= [6.597]- [-0.5 0 ][-8.722] = [2.236] 
5.891 0 -0.5 -5.499 3.142 

with /(X,)= -10.00. Since 

/(X 1)- /(Xo) = -10.00- (-36.58) = 26.58 > 0.05 

we continue iterating. 

Second iteration. 

Vfl = [-2(2.236- Vs)] = [-0.0001] 
x, -2(3.142- 1T) 0.0008 

X2 = x,- (H,Ix,r' Vflx, 

= r2.236J _ r-0.5 o Jr-0.0001J = r2.236J 
3.142 0 -0.5 0.0008 3.142 

with f(X2) = -10.00. Since f(X2)- /(X,)= 0 < 0.05, we take x• = X2 = [2.236, 3.142V, with z • = 
/(X2) = -10.00. 

11.9 Use the Newton-Raphson method to 

maximize: z = -sin x1x2 +cos (xt- Xz) 

to within a tolerance of 0.05. 

The gradient vector and Hessian matrix for this objective function are 

Vf= (-x2cosx,x2-s~n(x,-x2)] (1) 
-x, cos X1X2 + sm (x,- x2) 

H = [ X~ sin x 1x 2 - COS (Xl- X2) -COS X1X2 + X1X2 sin X1X2 +COS (X!- X2)] (2 ) 
I -COS x 1x 2 + X1X 2 sin X1X2 +COS (X!- X2) x1 sin X1X2- COS (X!- X2) 

From Problem 11.5 we appropriate the initial approximation Xo = [-0.7548, 0.5303V. 
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First iteration. Substituting the components of Xo into (1) and (2), we obtain 

Vfl = [ 0.4711] Xo -0.2643 
H I = [-0.3914 -0.4832] 

I Xo -·0.4832 -0.5038 
(HI r~=[ 13.88 -13.31] 

I Xo -13.31 10.78 

Then 

x~ = Xo- (HIIXor 1 vtiXo 
= [-0.7548]- [ 13.88 -13.31][ 0.4711] = [-10.81] 

0.5303 ·-13.31 10.78 -0.2643 9.650 

Observe that Xt is not close to Xo, which suggests that the numerical scheme is not converging. In this 
case, Theorem 11.1 shows that H11Xo is not negative definite; hence Xo was not chosen sufficiently close 
to a maximum to guarantee convergenc{: of the Newton-Raphson method. Therefore, rather than 
continuing to iterate, it is wiser to begin the method anew with a better approximation to a maximum. 

An improved initial approximation can be obtained in two ways. First, we could use a random 
number generator to provide additional values for X until a better approximation is found. Second, we 
could use the method of steepest ascent for one iteration with the current Xo, and then use the resulting 
vector to start the Newton-Raphson method. Adopting the second approach, we obtain from Problem 
11.5 the improved starting vector 

Xo = [0.04607] 
0.08099 

with f(Xo) = 0.9957 

(New) first iteration. Substituting Xt = 0.04607 and X2 = 0.08099 into (1) and (2), we obtain 

[
-0.04608] 

VfiXo = -0.08098 [ 
-0.9994 -0.0005888] 

HIIXo = -0.0005888 -0.9994 
<H 

1 
r~ = [ -tom o.ooo5895] 

I Xo 0.0005895 -1.001 

Then 

x~ = Xo- (HIIXor 1 vt1Xo 

[
0.04607] [ -1.001 

= 0.08099 - 0.0005895 

with f(Xt) = 1. Since 

0.0005895][-0.04608] = [0] 
-1.001 -0.08098 0 

f(X 1)- f(Xo) =' 1.0000- 0.9957 = 0.0043 < 0.05 

we take X* = Xt = [0, Of and z * = f(Xt) = 1. 

11.10 Use the Newton-Raphson method to 

maximize: z = -sin x1x2 +cos (x1 - x2) 

to within a tolerance of 0.05, starting with Xo = [4.8, 1.6Y. 

The gradient vector and Hessian matrix for this objective function are given by (1) and (2) of 
Problem 11.9. 

First iteration. 

Vfl = (-1.6 cos [(4.8)(1.6)]- sin (4.8- 1.6)] = [-0.2186] 
Xo -4.8 cos [(4.8)(1.6)) +sin (4.8- 1.6) -0.8893 

H I = [3.520 6.393] 
I Xo 6.393 23.69 (HI )-1 = [ 0.5572 -0.1504 ] 

I Xo -0.1504 0.08279 

Then 

x~ = Xo- (HIIXor 1 vti"<J 
= [4.8]- [ 0.5572 -0.1504 ][-0.2186] = [4.788] 

1.6 -0.1504 0.08279 -0.8893 1.641 

with f(Xt)= -2.000. Now, f(Xo)= -1.983; so even though Xt is close to Xo, we have 

/(Xt) </(Xu) 
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and the iterations are tending toward a minimum rather than a maximum. (Notice that HtiXo is not 
negative definite; in fact, it is positive definite.) A different value for Xo must be used, similar to the one 
determined in Problem 11.5, if the Newton-Raphson method is to succeed. 

11.11 Solve Problem 1.14 to within 0.25 km by the Fletcher-Powell method. 

Problem 1.14 is equivalent to a maximization program with objective function 

/(X)= -Vxi+ x~- V(x,- 300f+ (x2- 400f- V(x,-700)2 + (x2- 30W 

and gradient vector 

To initialize the Fletcher-Powell method, we set E = 0.25 and 

G= [~ ~] 

(1) 

(2) 

and choose X= [400, 200Y. which from Fig. 1-4 appears to be a good approximation to the optimal 
location of the refinery. 

STEPJ 

STEP2 

STEP3 

STEP4 

STEP6 

a =/(X)= /(400, 200) 

= -V(400f+ (200)2
- v(looi+ (-2ooi- v(-300f+ (-lOW= -987.05 

B = Vfl = [-0.39296] * 0.76344 

/(X+ A GB) = t((:J +A[~ ~][ -~:~::]) = t((:: ~:~:~~~ ]) 
= -V(400- 0.39296A)2 + (200 + 0.76344A)2 

- V(100- 0.39296Af+ (-200 + ll.76344A)2 

- Y(-300- 0.39296Af+ (-100 + 0.76344Af 

Making a three-point interval search of [0, 425], we determine A* = 212.5. Therefore, 

D = A *GB = (212 5)[1 0][-0.39296] = r-83.504] 
. 0 1 0.76344 162.23 

x + 0 = (400] + [-83.504] = [316.50] 
200 162.23 362.23 

which we take as the updated X: X= [316.50, 362.23JT. 

13 =/(X)= /(316.50, 362.23) = -910.76 

f3- a= -910.76- (-987.05) = 76.29> 0.25 

[
-0.071207 ] 

C = Vflt = 0.0031594 
y = 8- c = [-0.39296]- [-0.071207 ] = [-0.32175] 

0.76344 0.0031594 0.76028 
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STEP7 

STEPS 

MATHEMATICAL PROGRAMMING 

DTY = [-83.504, 162.23)[ -:~:;~~~] = 150.21 

1 1 [--83.504] 
L= 150.21 DDT= 150.21 162.23 [-83·504• 162·231 

1 [6972.9 -13547] [ 46.421 -90.187] 
= 150.21 -13 547 26 319 = -90.187 175.21 

YTGY = [-0.32175, 0.76028)[
0
1 0

][-
0

·
32175

] = o 68155 1 0.76028 . 

-1 
M = 0.68155 GYYT G 

-1 [1 0][-0.32175] [1 01] 
= 0.68155 0 1 0.76028 [-0·32175• 0·76028] 0 

-1 [ 0.10352 -0.24462] [-0.15189 0.35892] 
= 0.68155 -0.24462 0.57803 = 0.35892 -0.84811 

[PART I 

G + L+ M = [o1 0] + [ 46.421 -90.187] [-0.15189 0.35892] = [ 47.269 -89.828] 
1 -90.187 175.21 + 0.35892 -0.84811 -89.828 175.36 

STEP2 

STEP3 

STEP4 

STEPS 

which we take as the updated G. We also update a= -910.76 and 

B == [-0.071207 ] 
0.0031594 

f(X + AGB) = t([316.50] +A [ 47.269 -89.828][ -0.071207 ]) 
362.23 -89.828 175.36 0.0031594 

([
316.50 ·- 3.6497 A]) 

= f 362.23 + 6.9504A 

= -v' (316.50- 3.6497 A)2 + (362.23 + 6.9504A)2 

- V(I6.5o - 3.6497 A )2 + (-37.77 + 6.9504 A f 
-V(-383.50- 3.6497 AY+ (62.23+ 6.9504Ai 

Making a three-point interval search of [0, 10], we determine A*= 1.25. Therefore, 

D =A *GB = 025)[ 47.269 -89.828][-0.071207 ] = [-4.5621] 
. -89.828 175.36 0.0031594 8.6880 

X D = [316.50.] + [-4.5621] = [311.94] 
+ 362.23 8.6880 370.92 

which we take as the updated X. 

13 = f(X) = /011.94, 370.92) = -910.58 

f3- a= -910.58 ·- (-910.76) = 0.18 < 0.25 

X* =X= [311.94] 
370.92 

and /(X*)= f3 = -910.58 

Thus Problem 1.14 is SOlVed by xf = 3Jl.94 km, X~= 370.92 km, with z* = +910.58 km. 
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11.12 Show that the maximum located by the Fletcher-Powell method in Problem 11.11 is in fact the 
desired global maximum. 

In view of Theorem 11.6, it suffices to show that f(X), as given by (1) of Problem 11.11, is concave 
everywhere. Indeed, we need only show that the function 

g(X)= -v'xr+x~ 

is concave everywhere, since f(X) is the sum of three functions of this type, and the sum of concave 
functions is a concave function. Now, 

H _ 1 [-x~ X1X2] 
g - (XI+ X~)312 X1X2 -XI 

which, by Theorem 11.1, is negative semi-definite everywhere. Thus, by Theorem 11.5, g(X) is concave 
everywhere. 

11.13 Derive the Newton-Raphson method. 

Suppose that an approximation, Xk, to a stationary point of f(X) has been determined; we wish to 
find a nearby point, Xk+h that furnishes an even better approximation. Expanding the vector Vf in a 
Taylor series about Xk, we have 

(1) 

[The reader should verify that the ith row of (1) is the ordinary multivariable Taylor series for 
at/ax;.] Thus Vf!Xk+l will vanish, to the second order in small quantities, if 

or 

which is precisely the Newton-Raphson formula. 

11.14 Use the modified Hooke-Jeeves' pattern search to 

maximize: z = 3x1 + 2x2 + x3 - 0.02 (xf + x~ + x~- 325)2- 0.02 (x1x2)
2 

We arbitrarily begin with h = 1 and 8 = [0, 0, O]T. Then f(B) = -2112.5. 

STEP I 

STEP3 

STEP4 

f(O + 1, 0, 0) = -2096.52 (an improvement) 

/(1, 0 + 1, 0) = -2081.60 (an improvement) 

/(1, 1, 0 + 1) = -2067.70 (an improvement) 

Set c = [1, 1, 1V, with /(C)= -2067.70. 

Set S = [3, 3, 3V. 

T= 2[1, 1, 1V- [0,0, ov = [2, 2, 2V 

/(2 + 1, 2, 2) = -884.60 (an improvement over -2067.70) 

f(3, 2 + 1, 2) = -416.80 (an improvement) 

f(3, 3, 2 + 1) = -118.10 (an improvement) 

STEP 6 Set 8 = [1, 1, 1 )T and C = [3, 3, 3)T, with f(C) = -118.10. 

STEP3 

T = 2[3, 3, 3V- [1, 1, 1V = [5, 5, 5V 
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/(5 + 1, 5, 5) = -98 641.8 (not an improvement over -118.10) 

/(5- 1, 5, 5) = -27 876.2 (not an improvement) 

/(5, 5 + 1, 5) = -98 642.8 (not an improvement) 

f(5, 5- 1, 5) = -27 875.2 (not an improvement) 

f(5, 5, 5 + 1) = -98 638.3 (not an improvement) 

f(5, 5, 5- 1) = -27 867.7 (not an improvement) 

Set S = [5, 5, 5V. 

STEP 5 Set B = [3, 3, 3V, with f(B) = -118.10. 

STEP I 

Set C = [3, 3, 3V. 

/(3 + 1, 3, 3) = -154.86 (not an improvement) 

/(3 -1, 3, 3) = -417.90 (not an improvement) 

/(3, 3 + 1, 3) = -155.86 (not an improvement) 

/(3, 3- 1, 3) = -416.90 (not an improvement) 

/(3, 3, 3 + 1) = -155.60 (not an improvement) 

/(3, 3, 3- 1) = -416.80 (not an improvement) 

[PART I 

STEP 2' We sequentially evaluate the objective at all points obtained from 8 by perturbing one or 
more of the components of 8 by either 1 or -1. There are 26 possible perturbations, 
excluding the null perturbation. Functional evaluations cease if and when one yields a value 
larger than /(B)= -118.10. As shown in Table 11-1, this occurs at [2, 2, 4V. Therefore, we 
update B = [2, 2, 4V, with f(B) == -13.70. 

STEP I 

STEP3 

Table 11-1 

XI x· X3 /(Xh X2, XJ) 

2 2 2 -1522.90 
2 2 3 -886.20 
2 2 4 -13.70 
2 3 2 

.. . . . . ... 
4 4 3 
4 4 4 

/(2 + 1, 2, 4) = 0.60 (an improvement) 

/(3, 2 + 1, 4) = -155.6 (not an improvement) 

/(3, 2- 1, 4) = 11.44 (an improvement) 

/(3, 1, 4 + 1) = -2902.66 (not an improvement) 

/(3, 1, 4- 1) = -511.06 (not an improvement) 

Set C = [3, 1, 4V, with f(C) = 11.44. 

T = 2[3, 1, 4)T- [2, 2, 4V = [4, 0, 4V 
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/(4 + 1, 0, 4) = -6163.72 (not an improvement over 11.44) 

/(4- 1, 0, 4) = 10.12 (not an improvement) 

f(4, 0 + 1, 4) = -689.32 (not an improvement) 

/(4, 0- 1, 4) = -693.20 (not an improvement) 

/(4,0,4+ 1)= -6165.72 (not an improvement) 

/(4, 0, 4-1) = 12.12 (an improvement) 

Set S = [4, 0, 3V. 

STEP 6 Set B = [3, 1, 4V and C = [4, 0, 3)T, with f(C) = 12.12. 

STEP3 

STEP4 

T= 2[4, 0, 3V- [3, 1, 4V = [5, -1, 2V 

/(5 + 1, -1, 2) = -19 505.6 (not an improvement over 12.12) 

/(5- 1, -1, 2) = -42.40 (not an improvement) 

/(5, -1 + 1, 2) = -1980.12 (not an improvement) 

/(5, -1- 1, 2) = -2193.48 (not an improvement) 

/(5, -1, 2 + 1) = -2902.98 (not an improvement) 

/(5, -1, 2- 1) = -1810.58 (not an improvement) 

Set S = [5, -1, 2V. 

STEP 5 Set B = [4, 0, 3V, with /(B)= 12.12. 

Table 11-2 

Xt X2 X3 /(Xt, X2, XJ) 

3 0 2 -1028.68 
3 0 3 -5I9.38 
3 0 4 10.I2 
3 I 2 -10I7.76 
3 I 3 -5Il.06 
3 I 4 I1.44 
3 2 2 -884.60 
3 2 3 -4I6.90 
3 2 4 0.60 
4 0 2 -42.I8 
4 0 3 I2.I2 
4 0 4 -683.38 
4 I 2 -38.40 
4 I 4 -689.20 
4 2 2 -10.66 
4 2 3 2.04 
4 2 4 -805.46 
5 0 2 -I980.I2 
5 0 3 -2885.22 
5 0 4 -6I63.72 
5 I 2 -I991.28 
5 I 3 -2898.98 
5 I 4 -6I84.48 
5 2 2 -2I85.48 
5 2 3 -3132.I8 
5 2 4 -6522.68 
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STEP 1 Exploratory moves around B yield /(4, 1, 3) = 13.30, an improvement. Set C = [4, 1, 3V, 
with /(C)= 13.30. 

STEP3 

T= 2[4, 1, 3V- [4, 0, 3V = [4, 2, 3V 

STEP 4 Exploratory moves around T do not yield any improvements. Set S = [4, 2, 3]T. 

STEP 5 Set B = [4, 1, 3V, with /(B)= 13.30. 

STEP 1 Exploratory moves around B do not yield any improvements. Set C = [4, 1, 3V, with /(C)= 
13.30. 

STEP 2' As shown in Table 11-2, none of the 26 perturbations of B yields an improvement in the 
current value of the objective function, f(B) = 13.30. Therefore, B = [4, 1, 3V is the best 
integral solution (because h = 1, and we started at the integer point x, = X2 = X3 = 0) to the 
given program. 

To improve this approximation, we reduce h sequentially to 0.1, 0.01, and 0.001, beginning the algor­
ithm anew each time with the latest B. The results are exhibited in Table 11-3. We take xi= 3.825, 
x~ = 2.447, and x~ = 2.946, with z* = 17.56, as the optimal solution. 

Table 11-3 

Final Vector 

h X! X2 X3 z 

I 4 I 3 13.30 
0.1 3.9 1.4 3.1 16.88 
O.oi 3.89 2.40 2.82 17.54 
0.001 3.825 2.447 2.946 17.56 

Supplementary Problems 

Solve Problems 11.15 through 11.23 numerically, using either a random number generator or a reasonable 
guess to provide an initial approximation. Wherever possible, also solve analytically. 

11.15 maximize: z = - (2x,- 5i- (x2- 3i- (5x3- 2i 

11.16 minimize: 

11.17 minimize: 
8x, + 4x2- X1X2 

Z = (X!X2i 

11.18 minimize: z = -sin x, sin X2 sin (x, + x2) 

11.19 maximize: 

11.20 maximize: z = -(x,- x2i- (XJ- 1i- 1- 0.02(xi + x~ + x~- 16i 
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11.11 

(Hint: See Problem 11.12.) 

maximize: z = -(x,- VS)2- (x2- 7Tf -10 

with: x, and X2 integers 

11.22 Minimize the Rosenbrock function, z = (1- x,)2 + 100(x2- xrt. 

11.13 Census figures for a midwestern town are as follows: 

Year 1930 1940 1950 1960 1970 

Population 4953 7389 ll023 16445 24532 

Based on these data, an estimate for the population in 1980 is required. 

(1) Assume that the population growth is exponential and follows a curve of the form N = 
Aem•, where N denotes the population and t denotes time. 

(2) At any given census year T, there may be a discrepancy between the actual value of N given by 
the data and the theoretical value N = AemT. Designate this error as eT; e.g., 

e1930 = 4953- Aem<1930l 

(3) Determine the constants A and m so that 

is minimized. 

(4) Using these constants, evaluate the theoretical exponential curve (often called the /east-squares 
exponential curve) at t = 1980 and take that number to be the estimated population for 1980. 

11.24 Show that the quadratic function 
n n 

f(x~, X2, ••• , Xn) = ~ ~ a;jXiXi 
i=l j== 1 

with symmetric coefficient matrix A, is concave if and only if A is negative semi-definite. 



Chapter 12 
Non linear Programming: Mu ltivariable 
Optimization with Constraints 

STANDARD FORMS 

With X== [x., x2, ••• , xnY. standard form for nonlinear programs containing only equality con­
straints is 

maximize: z =/(X) 

subject to: g.(X) = 0 

gz(X) = 0 

gm(X) = 0 

with: m < n (fewer constraints than variables) 

(12.1) 

As in Chapter 11, minimization programs are converted into maximization programs by multiplying 
the objective function by -1. 

Standard form for nonlinear programs containing only inequality constraints is either 

maximize: z =/(X) 

subject to: g.(x) :so 

gz(X):s 0 (12.2) 

........ 
gp(X):sO 

or 

maximize: z =/(X) 

subject to: g.(x) :so 

gz(X) :S 0 
........ (12.3) 

gm(X):sO 

with: X;;::O 

The two forms are equivalent: (12.2) goes over into (12.3) (with m = p) under the substitution X= 
U- V, with U;;:: 0 and V;;:: 0; on the other hand, (12.3) is just (12.2) in the special case p = 

m + n and gm+;(X) = -X; (i = 1, 2, ... , n ). Form (12.3) is appropriate when the solution procedure 
requires nonnegative variables. In (12.1), (12.2), or (12.3), f is a nonlinear function, but some or all 
of the g's may be linear. 

Nonlinear programs not in standard form are solved either by putting them in such form (see 
Problems 12.7, 12.10, and 12.11) or by suitably modifying the solution procedures given below for 
programs in standard form (see Problems 12.8, 12.9, and 12.12). 

126 
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LAGRANGE MULTIPLIERS 

To solve program (12.1), first form the Lagrangian function 
m 

L(x., Xz, ... , Xn, A., Az, ... , Am)== /(X)- LA; g;(X) (12.4) 
i=l 

where A; (i = 1, 2, ... , m) are (unknown) constants called Lagrange multipliers. Then solve the system 
of n + m equations 

aL=O 
a xi 

aL =O 
a A; 

(j = 1, 2, ... , n) 

(12.5) 
(i = 1, 2, ... , m) 

Theorem 12.1: If a solution to program (12.1) exists, it is contained among the solutions to system 
(12.5), provided f(X) and g;(X) (i = 1, 2, ... , m) all have continuous first partial 
derivatives and the m x n Jacobian matrix, 

has rank m at X= X*. 

(See Problems 12.1 through 12.5.) The method of Lagrange multipliers is equivalent to using the 
constraint equations to eliminate certain of the x-variables from the objective function and then 
solving an unconstrained maximization problem in the remaining x-variables. 

NEWTON-RAPHSON METHOD 

Since L(x., x2, ••• , Xn, A., A2, ••• , Am)== L(Z) is nonlinear, it is usually impossible to solve (12.5) 
analytically. However, since the solutions to (12.5) are the stationary points of L(Z), and since 
(Theorem 11.3) the maxima and minima of L(Z) occur among these stationary points, it should be 
possible to use the Newton-Raphson method (Chapter 11) to approximate the "right" extremum of 
L(Z); that is, the one that corresponds to the optimal solution of (12.1). The iterative formula 
applicable here is 

(12.6) 

(See Problem 12.3.) 
This approach is of limited value because, as in Chapter 11, it is very difficult to determine an 

adequate Zo. For an incorrect Zo, the Newton-Raphson method may diverge or may converge to the 
"wrong" extremum of L(Z). It is also possible (see Problems 12.1 and 12.4) for the method to converge 
when no optimal solution exists. 

PENALTY FUNCTIONS 

An alternative approach to solving program (12.1) involves the unconstrained program 
m 

maximize: i =/(X)-~ p; gf(X) (12.7) 
i=l 

where p; > 0 are constants (still to be chosen) called penalty weights. The solution to program 
(12. 7) is the solution to ,program (12.1) when each g;(X) = 0. For large values of the p;, the solution 
to (12. 7) will have each g;(X) near zero to avoid adverse effects on the objective function from the 
terms p;gT(X); and as each p;-+ co, each g;(X)-+ 0. (See Problem 12.6.) 
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In practice, this process cannot be accomplished analytically except in rare cases. Instead, 
program (12. 7) is solved repeatedly by the modified pattern search described in Chapter 11, each 
time with either a new set of increased penalty weights or a decreased step size. Each pattern 
search with a specified set of penalty weights and a given step size is one phase of the solution 
procedure. The starting vector for a particular phase is the final vector from the phase immediately 
preceding it. Penalty weights for the first phase are chosen small, often 1/50 = 0.02; the first step 
size generally is taken as 1. 

Convergence of this procedure is affected by the rates at which the penalty weights are increased 
and the step size is decreased. Decisions governing these rates are more a matter of art than of 
science. (See Problem 12.7.) 

KUHN-TUCKER CONDIDONS 

To solve program (12.3), first rewrite the non negativity conditions as - x, :::50, - X2 :::50, 
••• , - Xn :::::; 0, so that the constraint set is m + n inequality requirements each with a less than or 
equals sign. Next add slack variables x;+., x;+z, ... , x~n+m, respectively, to the left-hand sides of the 
constraints, thereby converting each inequality into an equality. Here the slack variables are added 
as squared terms to guarantee their nonnegativity. Then form the Lagrangian function 

m m+n 
(12.8) 

where A" A2, ••• , Am+n are Lagrange multipliers. Finally solve the system 

aL=O 
a xi 

(i = 1, 2, ... , 2n + m) (12.9) 

aL =O 
a A; 

(i = 1, 2, ... , m + n) (12.10) 

A;;;::O (i = 1, 2, ... , m + n) (12.11) 

Equations (12.9) through (12.11) constitute the Kuhn-Tucker conditions for program (12.2) or 
(12.3). The first two sets, (12.9) and (12.10), follow directly from Lagrange multiplier theory; set 
(12.11) is known as the constraint qualification. Among the solutions to the Kuhn-Tucker conditions 
will be the solution to program (12.3) if f(X) and each g;(X) have continuous first partial deriva­
tives. (See Problem 12.10.) 

METHOD OF FEASffiLE DIRECTIONS 

This is a five-step algorithm for solving program (12.2). The method is applicable only when the 
feasible region has an interior, and then it will converge to the global maximum only if the initial 
approximation is "near" the solution (see Problems 12.13 and 12.14). The feasible region will have 
no interior if two of the inequality constraints have arisen from the conversion of an equality 
constraint (see Problem 12.11). 

STEP 1 Determine an initial, feasible approximation to the solution, designating it B. 

STEP 2 Solve the following linear program for the variables d., d2, ••• , dn+l: 
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maximize: z = dn+! 

subject to: 

(12.12) 

............................................. 

~agx I dt +~a I dz + ... + ~aag I dn + kpdn+t :5-gp(B) 
1 B Xz B Xn B 

with: di :51 (j = 1, 2, ... , n + 1) 

Here k; (i = 1, 2, ... ,p) is 0 if g;(X) is linear and 1 if g;(X) is nonlinear. 

STEP 3 If dn+t = 0, then X* = B; if not, go to Step 4. 

STEP 4 Set D = [d., d2, ... , dnf· Determine a nonnegative value for A that maximizes f(B +AD) 
while keeping B +AD feasible; designate this value as A*. 

STEP 5 Set B = B +A *D and return to Step 2. 

(See Problems 12.13 through 12.15.) 

12.1 

12.2 

Solved Problems 

maximize: z = 2xt + XtXz + 3xz 

subject to: xi+ Xz = 3 

It is apparent that for any large negative x, there is a large negative X2 such that the constraint 
equation is satisfied. But then z = X1X2-+ co. There is no global maximum. 

minimize: z = Xt + Xz + X3 

subject to: xi+ x2 = 3 

Xt + 3xz + 2x3 = 7 

The given program is equivalent to the unconstrained minimization of 

z =~(xi+ x, + 4) 

which obviously has a solution. We may therefore apply the method of Lagrange multipliers to the 
original program standardized as 

maximize: z = -x,- x2- XJ 

subject to: xi+ X2- 3 = 0 

X1 + 3x2+ 2xJ-7 = 0 

Here, /(x,, X2, XJ) = -x,- x2- XJ, n = 3 (variables), m = 2 (constraints), 

The Lagrangian function is then 

L = (-x,- x2- XJ)- A,(xi+ x2- 3)- A2(x1 + 3x2+ 2xJ-7) 

and system (12.5) becomes 

(1) 
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(2) 

(J) 

(4) 

(5) 

aL 
aA2 = -·(xI+ 3X2 + 2x3- 7) = 0 (6) 

Successively solving (4) for A2, (3) for A~, (2) for Xt, (5) for X2, and (6) for XJ, we obtain the unique 
solution A2 = -0.5, A,= 0.5, x, = -0.5, x2 = 2.75, and XJ = -0.375, with 

Z =-Xt- X2- X3 = -(-0.5)- 2.75- (-0.375) = -1.875 

Since the first partial derivatives of f(x~, X2, XJ), g,(xt, X2, XJ), and g2(x~, X2, XJ) are all continuous, and 
since 

is of rank 2 everywhere (the last two columns are linearly independent everywhere), either x, = -0.5, 
x2 = 2.75, XJ = -0.375 is the optimal solution to program (1) or no optimal solution exists. Check­
ing feasible points in the region around (-0.5, 2.75, -0.375), we find that this point is indeed the location 
of a (global) maximum for program (1). Therefore, it is also the location of a global minimum for the 
original program, with z * = -(-1.875) = 1.875. 

z .. = -( -1.875) = 1.875 

maximize: z =sin (x 1x 2 + X3) 

subject to: - x1x~ + xix~ = 5 

As in Problem 12.2, it is possible to establish in advance that an optimal solution exists. Indeed, by 
inspection, the point x, = 2Vs/7T, X2 = 0, X3 = rr/2 satisfies the constraint equation and makes z = 1; 
therefore it must represent a global maximum. 

Let us apply the method of Lagrange multipliers to this problem. The Lagrangian function here is 

L =sin (x1x2+ .l:J)- A,(xix~-x,xi- 5) 

so that the Lagrangian equations are 

a
aL = x2 cos (x,x2 + x3)- 2A ,x,x~ +A ,xi= o 
Xt 

a
aL = Xt COS (XtX2 + X3) + 3AtXtX~ = 0 
X2 

aL 
-a =cos (x,x2+ x3)- 2A,xrx3 = o 

X3 

aL 2 2 3 -= -(XtX3- XtX2- 5)= 0 aA, 

As these equations cannot be solved algebraically, we go over to the Newton-Raphson approach. The 
gradient vector and Hessian matrix of the Lagrangian function are 

VL = x, cos (x,xz + XJ) + 3A,~,x~ 
[

X2 cos (x,x.2 + XJ)- 2A,x,x~ + A,xi] 

COS (XtX2+ X3)- 2AtXtX3 
-<xrx~- x,xi- 5) 
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I I 
I I 
I I 1 

--------------------~------------------ --------------- ~---

1 I 
1 -xrsin(x,x2+x3)+6A,x,x2 1 
I I 

- X1X2 sin (XlX2 + XJ) + 3A 1X~ : : 
--------------------~------------------ --------------- 1---

1 I 

: -x, sin (x1x2+ X3) -sin (x,x2+ X3)- 2A,xr : 
I I --------------------1------------------ --------------- ~---

1 I 
: 3x,x~ -2xrx3 : o 

(The superdiagonal entries of the symmetric matrix have been omitted to save space.) Arbitrarily 
taking 

Zo = [-1, 1, 2.5, 1V 

we calculate as follows (rounding all computations to four significant figures). 

First iteration. 

[ 

13.57 J VLI = -3.071 
~ -4.929 

-2.25 

4.068 
-6.997 

0.9975 
-3 

9.003 
0.9975 

-2.998 
-5 

13.5] -3 
-5 
0 

[

0.05737 

(H I )-1"" 0.03845 
L ~ 0.1318 

0.03194 

0.03845 
-0.08206 

0.1531 
-0.03889 

0.1318 
0.1531 
0.2641 

-0.09044 

0.03194] 
-0.03889 
-0.09044 

0.1040 

Hence 

z, = Zo- <nLI~r' VLI~ = r-o.9388, o.8931, 2.279, o.2353V 

Second iteration. 

1.524 1.128 
[ 2579 ] r-3n6 -0.6503 1.524 -2.058 0.9309 

VLiz, = -0.8158 HLiz1 = 1.128 0.9309 -1.406 
-0.2479 10.47 -2.247 -4.018 

[0.~2 1.224 1.418 O.Oml] 
<n I r' = 1.224 1.574 2.309 -0.09969 

L Z! 1.418 2.309 2.404 -0.1569 
0.01391 -0.09969 -0.1569 0.03573 

Hence 

Continuing in this manner, we obtain successively 

ZJ = [-1.053, 0.5067, 2.099, 0.001369V 

z4 = [ -1.053, 0.4982, 2.095, o.000009V 

Zs = [ -1.053, 0.4981, 2.095, OV 

10.47 J -2.247 
-4.018 

0 

As the components of Z have stabilized to three significant figures, we take xT = -1.05, x~ = 0.498, 
x~ = 2.10, and A,= 0, with 

z *=sin (xTx~ + xn = 1.00 

Observe that the Newton-Raphson method has converged to a different global maximum from the one 
originally identified. 
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12.4 Disregarding Problem 12.1, use the Newton-Raphson method to 

maximize: z = 2Xt + XtX2 + 3xz 

subject to: xi+ Xz = 3 

Here, L = (2x 1 + X 1X2 + 3x2)- A 1 (x r + X2 -- 3 ). Therefore, 

VL= [2 :1xl;:~; 1 ] 
-xr-x2+3 

Arbitrarily taking Zo = [1, 1, 1]T, we calculate: 

First iteration. 

[

-2 1 
Hdzo= 1 0 

-2 -1 
-2] -1 

0 
(Hdzor1 = i[- ~ _; 

-1 -4 

-1] -4 
-1 

and Z1 = Zo- (HL!zor 1 V Llzo = [1/3, 10/3, 10/3r 

Second iteration. 

[ 

28/9] 
VLiz1= 0 

-4/9 [

-20 3 -2] 
HLiz1 = ~ 3 0 -3 

-2 -3 0 

and Z2= Z1- (HLJz1f 1VLJz1 = [2/3, 8/3,11/3r 

Continuing for two more iterations, we obtain 

z3 = [0.6333, 2.6, 3.633r 

z4 = [0.6330, 2.599, 3.633JT 

6 
-4 

-66 

-9] -66 
-9 

As the components of Z have stabilized to three significant figures, we take x! = 0.633, x~ = 2.60, 
and At = 3.63, with 

z* = 2xt + xtx! + 3x~ = 10.7 

By expressing z as a (cubic) function of X1 alone, we can easily see that in this particular case the 
Newton-Raphson method has converged on a local maximum. 

12.5 Give a geometrical argument for the method of Lagrange multipliers in three dimensions. 

Fig. 12-1 
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Refer to Fig. 12-1. The problem is to maximize a function f(x,, x2, X3) along the space curve C€ in 
which the two surfaces 

and 

intersect. Let P be the point of ~ at which the maximum is attained. From Problem 11.7, we know 
that the gradient off must have a zero projection on the tangent to ~ at P; otherwise a small displace­
ment along the curve would produce an even larger functional value. Thus V/IP must lie in the normal 
plane to the curve at P. But then this vector is expressible as a linear combination of the two surface 
normals at P, VgtiP and Vg2jP; that is, 

or (1) 

where L ""f- A.g.- A2K2· 
The three scalar equations represented by (1) are the first three Lagrangian equations (12.5); the 

remaining two Lagrangian equations merely restate the requirement that P actually lie on C€. 

12.6 Use the penalty function approach to 

Here (12. 7) becomes 

maximize: z = -4- 3(1- x1) 2 - (1- x 2) 2 

subject to: 3xt + x2 = 5 

maximize: i = -4- 3(1- x,)2- (1 - x2)2- p,(3x, + X2- 5)2 

This unconstrained maximization program in the two variables Xt and X2 is sufficiently simple that it may 
be solved analytically. Setting Vi = 0, we obtain 

(1 + 3pt)Xt + PtX2 = 1 + 5pt 

3ptXt + (1 + p,)x2 = 1 + 5pt 

Solving these equations for x, and X2 in terms of p,, we obtain 

Since the Hessian matrix 

_ _ 1 + 5pt _ (1/pt) + 5 
Xt - X 2

- 1 + 4pt - (1/pt) + 4 

is negative definite for every positive value of p., i is a strictly concave function, and its sole stationary 
point must be a global maximum. Therefore, letting P•-+ +co we obtain the optimal solution to the 
original program: 

5 * Xt-+4= Xt 

with z* = -4- 3(1- xT) 2
- (1- xn 2 = -4.25. 

12.7 Use the penalty function approach to 

minimize: z = (x 1 - x2)
2 + (x3 -1)2 + 1 

subject to: x~ + x~ + x~ = 16 

Putting this program in standard form, we have 

maximize: z = -(xt- x2)2- (x3 -1)2- 1 

subject to: x~ + x~ + x~- 16 = 0 

For program (1 ), (12. 7) becomes 

maximize: i = -(Xt- x2)2- (x3- 1)2 -1- pt(x~ + x~ + x~- 16)2 

(1) 

(2) 
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Phase 1. We set Pt = 0.02 in (2) and consider the program 

maximize: i = -(xt- x2)2 - (xJ- 1)2- 1- 0.02(x~ + x~ + x~- 16)2 (3) 

Arbitrarily selecting [0, 0, O]T as our initial vector, and setting h = 1, we apply the modified pattern 
search (Chapter 11) to program (3). The result after 78 functional evaluations is [1, 1, 1JT, with 

/(1,1,1)=-1 and g,(1, 1, 1) = -13 

Phase 2. Since g1(1, 1, 1) = -13 'f. 0, the constraint in program (1) is not satisfied. To improve this 
situation, we increase p, in (2) to 0.2 and consider the program 

(4) 

Taking [1, 1, 1]T from Phase 1 as the initial approximation, we apply the modified pattern search to (4), 
still keeping h = 1. The result remains [1, 1, 1V, indicating that the constraint cannot be satisfied in 
integers. 

Phase 3. Since increasing Pt did not improve the current solution, we return to program (3), reduce h to 
0.1, and make a new pattern search, again with [1, 1, 1V as initial approximation. The result is 
[1.5, 1.5, 1]T, with 

/(1.5, 1.5, 1) = -1 and g,(l.S, 1.5, 1) = 0.1875 

Table 12-1 

Final Vector X 
f--· 

Phase Pt h Xt X2 XJ f(X) g,(X) 

1 0.02 1 1 1 1 -1 -13 
2 0.2 1 1 1 1 -1 -13 
3 0.02 0.1 1.5 1.5 1 -1 0.1875 
4 0.2 0.1 1.5 1.5 1 -1 0.1875 
5 0.02 0.01 1.49 1.5 1 -1.000 -0.0623 
6 0.2 O.Dl 1.49 1.5 1.01 -1.000 -0.0113 
7 0.2 0.001 1.496 1.496 1.002 -1.000 -0.0039 
8 2 0.001 1 496 1.496 1.003 -1.000 0.0012 
9 20 0.001 1.496 1.496 1.003 -1.000 0.0012 

Continuing in this manner, we complete Table 12-1. Using the results of Phase 9, we conclude 
that X f = 1.496, X! = 1.496, X J = 1.003, with Z * = + 1.000, approximates the optima) solution to the 
original minimization program. 

By inspection, the exact solution is 

xT = x! = e1rs = 1.4963 x! = 1 

with z • = 1. Thus the penalty function approach has yielded a result good to four significant figures. 

maximize: z == -x~x~-x1x~-1 

subject to: x 1 + 2x2 + 3x3 - 4 = 0 

X1X3- 19 = 0 

with: all variables integral 

The penalty function method is applicable to this integer program, provided that the pattern search 
starts from an integral first approximation, say [0, 0, OV, and employs h = 1 throughout. Using it, we 
generate Table 12-2 and find xT = 1, x! = -27, x! = 19, with z* == -1091. 
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Table 12-2 

Final Vector X 

Phase PI P2 h Xt X2 XJ /(X) g,(X) g2(X) 

1 0.02 0.02 1 4 0 0 -1 0 -19 
2 0.02 0.2 1 4 0 0 -1 0 19 
3 0.02 2 1 1 -1 12 -146 31 -7 
4 0.2 20 1 1 -11 17 -411 26 -2 
5 2 200 1 1 -24 19 -938 6 0 
6 20 200 1 1 -27 19 -1091 0 0 

12.9 Describe how the penalty function approach can be modified to solve program (12.1) if 
nonnegativity conditions are added. 

Require the initial approximation to have only nonnegative components. Then restrict exploratory 
moves to vectors satisfying the nonnegativity conditions. This can best be accomplished by penalizing 
the objective function whenever the nonnegativity conditions are violated. That is, f(X) is evaluated as 
a prohibitively large negative number, perhaps -1 x 1030

, whenever any component of the perturbed 
vector X is negative. 

12.10 Solve the following program by use of the Kuhn-Tucker conditions: 

minimize: z = xi+ 5x~ + lOxi- 4.itX2 + 6x1x3- 12x2x3- 2xt + 10x2 + Sx3 

subject to: x 1 + 2x2 + X3 ~ 4 

with: all variables nonnegative 

First transforming into system (12.3) and then introducing squared slack variables, we obtain 

maximize: z = -xt- Sx~- lOx~+ 4x,x2- 6x,x3 + 12x2xJ + 2x,- 10x2- 5x3 

+X~ 

=0 

=0 

=0 

+x~= 0 

For this program, the Lagrangian function is 

L = -xt- Sx~- lOx~+ 4xtX2- 6xtXJ + 12x2xJ + 2x 1 - lOx2- SxJ 

-A,(-x,- 2x2- XJ + 4 + x~)- ,.\2(-x, + xD-AJ(-x2 + xg)- ,.\4(-XJ + xn 

Taking the derivatives indicated in (12.9) and (12.10), we have 

aL 
- = -2x, + 4x2- 6x3 + 2 +A,+ A2 = 0 ax, 

aL 
-= -2AtX4= 0 ax4 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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(7) 

(B) 

(9) 

(10) 

(11) 

These equations can be simplified. Set 

St ""X~ (12) 

Equations (4) through (7) imply respectively that either At or x., either A2 or x 5, either A3 or x6, and 
either A. or X1, equals zero. But, by (9) through (12), x., xs, xo, and x1 are zero if and only if s., x~, x2, 
and XJ are respectively zero. Thus, (4) through (7) and (9) through (12) are equivalent to the system 

There are 16 solutions to this system. 

AtSt == 0 

hx,=O 
.\3X2 = 0 

(13) 

One of these solutions is St = A2 = AJ = XJ = 0. 
and simplifying, we get the linear system 

Substituting these values into (8), (1 ), (2), and (3), 

Xt + 2X2 

-2xt + 4x2 + At 

4xt- 10x2 + 2At 

-6xt+12x2+ At+A. 

= 4 
== -2 

10 

5 

which has the unique solution Xt = 2.941, x2= 0.5294, At= 1.764, and A.= 14.53. These results are 
listed in row 10 of Table 12-3. (Boldface entries in the table correspond to solutions of (13).) 

A second solution of (13) is St = Xt = x2 = x.1 = 0. Substituting these values into (8), (1), (2), and 
(3), and simplifying, we get the linear system 

At+A;· 

2At +AJ 

At 

0= 4 

= -2 

10 

+A.== 5 

which has no solution, as indicated in row 16 of Table 12-3. The other 14 possibilities are handled 
similarly, and the results are also listed in Table 12-3. 

The only row in Table 12-3 having nonnegative entries for all variables, as required by the 
Kuhn-Tucker conditions, is row 10. Now, since z = f(X) and 

gt(X) '~ - Xt- 2x2- XJ + 4 

have continuous first partial derivatives, one of the solutions to the Kuhn-Tucker conditions must reflect 
the optimal solution of the maximization program. But the Kuhn-Tucker conditions here have a unique 
solution! Consequently, xt = 2.941, x! = 0.5294, x~ = 0, giving z* == 3.235 for the original minimiza­
tion program. 
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Table 12-3 

A, A2 AJ A4 x, X2 

0 0 0 0 11.5 -3 

0 0 0 11 -5 -3 

0 0 6 0 17.5 0 

0 0 6 11 1 0 

0 -1.643 0 0 0 -4.643 

0 2 0 17 0 -1 

0 -3.5 13 0 0 0 

0 -2 10 5 0 0 

0.3809 0 0 0 14.36 -2.238 

1.764 0 0 14.53 2.941 0.5294 

-3.2 0 18.8 0 6.3 0 

6 0 -8 11 4 0 

6.623 -8.738 0 0 0 1.507 

15 -25 0 -34 0 2 

85 -63 -208 0 0 0 

. . . . . . . . . ... 0 0 

12.11 Transform the following program into system (12.3): 

minimize: z = 12xi + 2.8x~ + 55.2XJ- 5.6x1x2 

XJ 

-5.5 

0 

-5.5 

0 

-3.036 

0 

-0.25 

0 

-5.881 

0 

-2.3 

0 

0.9855 

0 

4 

0 

s, 

-4 

-15 

-4 

-3 

-16.32 

-2 

-4.25 

-4 

0 

0 

0 

0 

0 

0 

0 

0 

- S.6X2X1 + 23XzX3 + 23X3Xt- 12X2X3- 12X3X2 

subject to: x 1 + x2 + x3 = 10 000 

9xz + ?x2 + 10x3 2:80 000 

with: all variables nonnegative 

Multiplying the objective function by -1, we obtain: 

maximize: z = -12x~- 2.8x~- 55.2x~ + 5.6x,x2 

+S.6X2X1- 23X!X3- 23XJX! + 12X2XJ + 12XJX2 

The equality constraint is equivalent to the two inequalities 

and 

Hence the complete set of constraints can be given as 

X1 + .t2+ X3-10 000 ~0 

-x,- x2- XJ+10000~0 

-9x,- ?x2- lOxJ + 80 000 ~ 0 
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(1) 

(2) 

(3) 

(4) 

Expressions (3) and (4), augmented by nonnegativity conditions on the variables, represent standard 
form for this problem. 
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The problem now can be solved by utilizing the Kuhn-Tucker conditions (see Problem 12.33). 
Another solution procedure is given in Problem 12.12. 

12.12 How may the penalty function approach be used to solve Problem 12.11? 

The second constraint, (2) of Problem 12.1 1, can be converted into an equality by subtracting a 
surplus variable, X4, from its left-hand side. Then the system composed of (3), (1), and (2) can be 
solved by the penalty function approach as modified in Problem 12.9. 

12.13 Use the method of feasible directions to 

maximize: z == Xt + x2 

subject to: X2X1- 2x2 :s 3 

3xz + 2x2 :s 24 

with: all variables nonnegative 

Put into standard form (12.2), the program is 

maximize: z = Xt + xz 

subject to: XzXt- 2xz- 3 :s 0 

3xt + 2xz- 24:s 0 

-xt:SO 

-xz :S 0 

Here, f(X) = Xt + xz, gt(X)"' XzXt- 2xz- 3, gz(X) = 3xt + 2xz- 24, g3(X) = - Xt, and g4(X) = - xz; 

at= 1 
ax( 

at= 1 
axz 

ag1 ag1 
-=xz -= Xt-2 
ax( axz 

agz = 3 
ax( 

agz = 2 
axz 

ag3 = _ 1 
ax( 

ag3 = 0 
axz 

ag4 = 0 ax( 
ag4 = _ 1 
axz 

(1) 

Furthermore, gt(X) is nonlinear, while gz(X), g1(X), and g4(X) are all linear; therefore, kt = 1 and kz = 
kJ = k4 = 0 in program (12.12). 

STEP 1 We arbitrarily initialize 8 as [1, 1r, which is feasible. 

STEP 2 With this 8, program (12.12) becomes 

maximize: z = d3 

subject to: -dt- dz + d3 :s 0 

dt- dz + d3 :s 4 

3dt + 2dz :s 19 

-dt :s 

- dz :s 

with: dt :s 

dz :s 

d3:S 

Its solution is dt = 1, dz = 0, d3 = 1. 
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STEP 3 d3 = 1 ~ 0. 

STEP4 D = [1, OV, hence 

STEPS 

t(G] +A[~])= /(1 +A, 1) = 2+ A 

which becomes arbitrarily large as A tends to oo. To keep (1 +A, 1V feasible, however, A can 

be no greater than 4 if the first constraint in program (1) is to be satisfied, and no greater than 

19/3 if the second constraint is to be satisfied. Thus, A • = 4. 

STEP 2 With this updated B, program (12.12) becomes 

maximize: z = dJ 

subject to: -dt- d2 + d3 s 0 

dt + 3d2 + d3 :S 0 

3dt +2d2 s7 

-dt s5 

- d2 s1 

with: dt :S1 

d2 :S1 

d3 :S 1 

Its solution is dt = 1, d2 = -1/2, d3 = 1/2. 

STEP 3 d3 = 1/2 ~ 0. 

STEP4 D= [1, -W, so 

STEPS 

t( [i] + A [ _
1 !]) = f(5 + A, 1 - tA) = 6 + tA 

which becomes arbitrarily large as A tends to oo, To keep [5 + A, 1 - !AV feasible, however, A 

can be no greater than 3.5 if the second constraint in program (1) is to be satisfied, and no 

greater than 2 if the nonnegativity constraint on X2 is to be satisfied. (The other two 

constraints in program (1) are satisfied for any nonnegative choice of A.) Thus, A • = 2. 

Table 12-4 

Xt X2 dt d2 d3 A* 

1 1 1 0 1 4 

5 1 1 
I ! 2 -2 2 

7 0 1 0 1 1 
8 0 ~ 1 1 0.531373 -3 3 

7.64575 0.531373 0 0 0 ... 

Continuing in this manner, we complete Table 12-4. It follows that xT = 7.64575, x! = 0.531373, 

with 

z .. = f(x T, X n = 7.64575 + 0.531373 = 8.17712 
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12.14 Show that the solution found in Problem 12.13 is not optimal. 

The second constraint of the original program may be written as 

which shows that if x1 > 0, then z < 12. On the other hand, if x1 = 0, then z = x2 s 12. It follows 
that the global maximum is z* = 12, assumed at xf = 0, xJ = 12. The solution obtained in Problem 
12.13 is only a locally constrained maximum; the method of feasible directions would have located the 
global maximum had B initially been chosen closer to [0, 12V. 

12.15 Interpret graphically the method of feasible directions. 

The method of feasible directions produces a direction D along which one can move from B, the 
current best approximation to X*, so as to achieve a better value of the objective function. Such a 
move is possible only if d,.+l-# 0, and then A • represents the maximal step size that can be taken. 
Figure 12-2 illustrates the solution procedure for the calculations in Problem 12.13. 

10 II 12 X! 

Fig. 12-2 
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Supplementary Problems 

Put programs 12.16 through 12.20 in standard form. 

12.16 

12.17 

12.18 

12.19 

12.20 

subjectto: 2x?+x~=10 

minimize: z = (xt- 1)2 + x~ 

subject to: x? + x~ = 4 

maximize: z = 6xt- 2x? + 2xtX2- 2x~ 

subject to: Xt + X2 s 2 

with: all variables nonnegative 

minimize: z = 24x? + 14x~ + 46x~- 28xtX2- 24xtXJ + 34x2XJ 

subject to: 11xt + 9x2 + 12xJ;?; 1000 

X2 + X3 = 40 

with: all variables nonnegative 

subjectto: x~+x~=4 

XtXJ = 3 

with: all variables nonnegative 
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Solve Problems 12.21 through 12.23 analytically by Lagrange multipliers and then numerically by either the 
Newton-Raphson method or the penalty function approach. 

12.21 Problem 12.17. 

12.22 

12.23 

minimize: z = X1X2 + XJ 

subject to: x?+ x~ + x~ = 1 

maximize: z = xt + X2X3 

subject to: 4x? + x~ = 16 

2x2 + 3xJ = 25 

12.24 Find the point on the parabola y 2 = 4x that is closest to the point (1, 0). 

12.25 Use Lagrange multipliers to solve Problem 12.20 without the nonnegativity conditions. Based on the 
result, solve the problem with the nonnegativity conditions. 
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12.26 Solve Problem 12.16. 

12.27 minimize: z=x~+x~+x3 

subject to: X1X2X3 = 3 

Xt + X2- X3= 3 

12.28 Solve Problem 12.27 with the additional constraint that all variables be integral. 

12.29 

12.30 

12.31 Solve Problem 12.18. 

12.32 Solve Problem 12.19. 

maximize: z =, x~ + 2x~ + x3 + x1x2 + XtXJ 

subject to: x~ + x~ + x3 = 25 

8x + 14x2+7xJ= 56 

with: all variables nonnegative 

minimize: z = x!x~ + x1x5 + 1 

subject to: Xt + 2x2 + 3xJ = 4 

XtXJ= 19 

12.33 Use the Kuhn-Tucker conditions to solve the program given in Problem 12.11. 

Solve Problems 12.34 and 12.35 by the penalty function approach. 

12.34 

12.35 

minimize: z = (xt- 2)2 + (x 2 - 1)2 

subject to: Xt- 2x2 = -1 

x~ + 4x~ :54 

maximize: z =In (I+ x,) + 2In (I+ x2) 

subject to: Xt + X2 s 2 

with: all variables nonnegative 

[PART I 

(Hint: Simplify the problem by maximizing ez and establishing beforehand that the constraint must 
hold with equality.) 

Use the method of feasible directions to solve Problems 12.36 and 12.37. 

12.36 

12.37 

minimize: z = (xt- 2)2 + (x 2 - 2)2 

subject to: Xt + 2x2 :5 3 

8xt + Sx2210 

with: Xt and x2 nonnegative 

maximize: z = Xt + 3x2 

subject to: x1x2 2 3 

x~+x~s9 

with: Xt and x2 nonnegative 



Chapter 13 
Quadratic Programming 

STANDARD FORM 

The general maximization quadratic program has the matrix form 

maximize: z == xrcx + DTX 

subject to: AX s B 

with: x~o 

in which the symmetric matrix C is negative semi-definite (see Chapter 11). 

(13.1) 

The condition on C, which was not imposed in the original definition of a quadratic program 
(Chapter 1), makes z a concave function (by Problem 11.24), thereby guaranteeing that any local 
maximum over the convex feasible region will be a global maximum over that region. The 
nonnegativity requirements, also absent from Chapter 1, are imposed to aid solution procedures. If 
not originally present, they can always be effected in the usual way-by expressing the variables as 
differences of nonnegative variables. Notice, however, that this substitution will convert an ori­
ginally negative definite matrix into one that is only negative semi-definite. 

Minimization quadratic programs are solved by converting them into maximization programs in 
standard form. (See Problem 13.1.) 

A KUHN-TUCKER SYSTEM 

It follows from applying the Kuhn-Tucker conditions (see Chapter 12) to program (13.1) that the 
optimal solution to this program, if it exists, must satisfy the new matrix equation 

(13.2) 

where 

If A is of order m x n [i.e., if (13.1) involves m inequalities in the n variables x1, x2, ••• , xn], then 11 

and 12 are identity matrices of orders m x m and n x n, respectively; 0~, 02, and 03 are zero matrices of 
orders m x n, m x m, and n x m, respectively; Sis an m-dimensional vector of slack variables; and U 
and V are vectors of Lagrange multipliers, having n and m components, respectively (see Problem 
13.8). 

The Kuhn-Tucker conditions also require the optimal solution of (13.1) to satisfy the equation 

urx + vrs == 0 or yry = 0 (13.3) 

where 

Last, the Kuhn-Tucker conditions require that all variables be nonnegative; that is, Y ~ 0. 

143 
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THE METHOD OF FRANK AND WOLFE 

This method is an eight-step algorithm for solving (13.2) and (13.3) based on the simplex method, 
which automatically keeps all variables nonnegative. New vectors P and Yc (the current Y-vector) 
are determined and then systematically updated until Yc contains the optimal solution. 

To employ the simplex method, one must have B nonnegative. Therefore, if any component of 
B is negative, the corresponding constraint equation must first be multiplied by -1. 

STEP 1 Determine a basic feasible solution to (13.2) and designate it as both Yc and P. Such a 
solution can be found by adding an artificial variable to each constraint equation and then 
applying the two-phase method to minimize M times the sum of these artificial variables, 
where M denotes a very large, positive penalty cost. If an initial solution free of artificial 
variables cannot be obtained, then the original quadratic program has no solution. 

STEP 2 Evaluate fJ = pryc· If fJ == 0, then X* is the first n components of Yc, and the program is 
solved. If fJ ;4 0, go to Step 3. 

STEP 3 Use as the current objective 

maximize: z == - pT Y 

Apply one iteration of the simplex method to this objective coupled with the current set of 
basic variables and the constraint tableau that defined those variables. Designate the new 
solution as the updated Yc. 

STEP4 Evaluate 8c =Y[Yc. If 8c == 0, then X* is the first n components of Yc, and the program 
is solved. If 8c =F 0, go to Step 5. 

STEP 5 Evaluate pryc· If pryc s !fJ, go to Step 6. If not, return to Step 3 and perform another 
iteration of the simplex method. 

STEP 6 Evaluate 
_ pT(P- Yc) 

a=-- -
(P- Ycf(P- Yc) 

If a~ 1, go to Step 7; if a < 1, go to Step 8. 

STEP 7 Set fJ == 8c, P == Y <• and return to Step 3. 

STEP 8 Calculate the vector P- a(P- Yc)- Designate this vector as the updated P and return to 
Step 2. 

AN APPLICATION TO PORTFOLIO ANALYSIS 

A fixed sum of money, F, is to be spread among n different investments, eacq of which has a 
known history of returns. The portfolio problem is to determine how much money should be 
allocated to each investment so that the total expected return is greater than or equal to some lowest, 
acceptable amount, L, and so that the total variability in future payments is minimized. 

Let x; (i == 1, 2, ... , n) designate the amount of funds to be allocated to investment i, and let xik 
denote the return per dollar invested from investment i during the kth time period in the past 
(k == 1, 2, ... , p ). If the past history of payments is indicative of future performance, the expected 
future return per dollar from investment i is 

p 

Zx;k 
E == k=l '--p 

and the expected return from all investments combined is 

E == EtXt + EzX2 + · · · + EnXn 

(13.4) 

(13.5) 
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As the measure of total variability in future payments, based on past returns, we choose the quantity 
p 

L (XJkXt + x2kX2 + ... + XllkXn - E'f 
z == ,_k=_,l,__ ___________ _ 

p (13.6) 

i.e., the average over the p past time periods of the squared deviation between the total return from 
an allocation (xt. x2, ... , Xn) and the expected value of that total return. [In statistical terminology, 
the quantity (13.6) would be called the variance of the total return, and would be designated 
u 2

.] By substituting (13.5) into (13.6) and rearranging, we may simplify as follows: 

1 p 

Z ==- L [(x!k- Et)Xt + (x2k- E2)x2 + · · · + (xnk- En)Xn]2 
p k=l 
l p n n 

==- L L L (x;k- E;)(xik- Ei)x;xi (13.7) 
p k=l i=l j=l 

n n 

= L LU~X;Xj 
i=l j=l 

in which the covariances u~ are given by 

1 p 1 p 1 ( p )( p ) 
u~ ==- L (x;k- E;)(xik- Ei) ==- L X;kXik- 2 L X;k L xik 

p k=l p k=l p k=l k=l 
(13.8) 

From (13.6) it is apparent that z, as a sum of squares, is nonnegative for all values of Xt. x2, 
... , x". This means that the symmetric matrix C = [u~] in (13. 7), the covariance matrix, is positive 
semi-definite. 

The portfolio problem may thus be modeled by the quadratic program 
n n 

minimize: z == L L U~X;Xj == xr ex 
i=l j=l 

subject to: Xt + X2 + · • · + Xn == F 

EtXt + E2X2 + · · · + EnXn ~ L 

with: all variables nonnegative 

Program (13.9) will be infeasible if L is set too high. 

Solved Problems 

13.1 Put the following program in standard form: 

minimize: z == x~ + Sx~ + lOx~- 4XtX2 + 6x1x3- 12x2x3- 2xt + 10x2 + 5x3 

subject to: x1 + 2x2 + x3 ~ 4 

with: all variables nonnegative 

As was shown in Problem 12.10, this program is equivalent to 

maximize: z = -x~- 5x~- 10x3 + 4XIX2- 6x1X3 + 12x2XJ + Zx1- 10x2- 5x3 

subject to: -x1- Zx2- X3 ~ -4 

with: all variables nonnegative 

or, in matrix form, 

(13.9) 
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maximize: -3][Xl] [X1] 6 X2 + (2, -10, -5) X2 
-10 X3 X3 

(1) 

with: X2:0 

Program (1) is in standard form, (13.1), with 

A"" [-1, -2, -1] 85[-4] 
[ 

-1 
Cs 2 

-3 
-~ -~] 

6 -10 
(2) 

Matrix Cis negative semi-definite, as required; in fact, it is negative definite (see Theorem 11.1). 

13.2 Determine the Kuhn-Tucker system for the standardized program of Problem 13.1. 

For the matrices defined in (2) of Problem 13.1, (13.2) becomes 

[

-1 -2 -1 : 1 I 0 0 0 I 0 J --i--.:r--6- ~--o-· :-.:c-o---o- :-.:r-
1 I I 

-4 10 -12 I 0 I 0 -1 0 I -2 
I I I 

6 -12 20 I 0 I 0 0 -1 I -2 

and (13.3) becomes 

=0 

X! 
X2 

l~n 
XJ 
S1 

U1 

U2 
(1) 

UJ 
VI 

(2) 

Equations (1) and (2), along with the condition that all variables be nonnegative, constitute the 
Kuhn-Tucker system. 

13.3 Solve the program given in Problem 13.1. 

The optimal solution to this program is embedded in the solution to the associated Kuhn-Tucker 
system; that system was obtained in Problem 13.2. We solve the Kuhn-Tucker system by the method of 
Frank and Wolfe. 

As a preliminary step, we check whether B is nonnegative. Since this is not the case, we multiply 
the first, third, and fourth constraint equations in (1) of Problem 13.2 by -1, obtaining 

X1 + 2x2 + X:- S1 

2x1- 4x2 + 6x: 
4xl- 10x2 + 12x:­

-6xl + 12x2- 20x: 

= 4 
- U1 - V1 = 2 

+ u2 + 2v1 = 10 
+ U3+ V1 = 5 

STEP 1 To generate a basic feasible solution to the above set of equations, we could introduce an 
artificial variable in each equation and then minimize M times the sum of those artificial 
variables. Alternatively, we note that u2 and U3 can be used as basic variables to solve the last 
two equations (u2 = 10 and UJ = 5), so that artificial variables w1 and w2 need be added only to 
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WI 

XJ 

U2 

UJ 

STEP2 
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the first two equations, respectively. Doing so and then mimmizmg Mw1 + Mw2 by the 
two-phase method, we generate Tableaux 1, 2, and 3. (All calculations are rounded to four 
significant figures; pivot elements are starred.) An initial solution is read from Tableau 3 as 

[0, 1.375, 1.25, 0, 0, 8.75, 13.5, Of 

which we designate as both the initial P and Y ,. 

X! X2 XJ S! U! U2 UJ VI WJ 

0 0 0 0 0 0 0 0 M 

WI M 1 2 1 -1 0 0 0 0 1 
W2 M 2 -4 6* 0 -1 0 0 -1 0 
U2 0 4 -10 12 0 0 1 0 2 0 
UJ 0 -6 12 -20 0 0 0 1 1 0 

(Cj- Zj): 0 0 0 0 0 0 0 0 0 
-3 2 -7 1 1 0 0 1 0 

Tableau 1 

X! X2 XJ SJ UJ U2 UJ V! 

0.6667 2.667* 0 -1 0.1667 0 0 0.1667 
0.3333 -0.6667 1 0 -0.1667 0 0 -0.1667 

0 -2 0 0 2 1 0 4 
0.6660 -1.334 0 0 -3.334 0 1 -2.334 

0 0 0 0 0 0 0 0 
-0.6669 -2.667 0 1 -0.1669 0 0 -0.1669 

Tableau 2 

X! X2 XJ S! U! U2 UJ VI 

W2 

M 

0 
1 
0 
0 

0 
0 

WI 

0 
0 
1 
0 

0 
0 

X2 0.2500 1 0 -0.3750 0.06250 0 0 0.06250 
XJ 0.5000 0 1 -0.2500 -0.1250 0 0 -0.1250 
U2 0.5000 0 0 -0.7500 2.125 1 0 4.125 
UJ 0.9995 0 0 -0.5003 -3.251 0 1 -2.251 

0 0 0 0 0 0 0 0 

Tableau 3 

4 
2 

10 
5 

0 
-6 

3.667 
0.3333 

6 
11.67 

0 
-3.667 

1.375 
1.250 
8.750 

13.50 

0 

(J = pTyc = (0, 8.75, 13.5, 0, 0, 1.375, 1.25, 0) 

0 
1.375 

1.25 
0 
0 

8.75 

= 57.81-.< 0 

13.5 
0 
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STEP 3 The new objective is to maximize 

STEP4 

X2 

z = -pTy = -[0, 8.75, 13.5, 0, 0, 1.375, 1.25, OJ 

Combining this objective function with both the constraint equations and basic variables given 
in Tableau 3, we generate Tableau 4. One iteration of the simplex method yields Tableau 5, 
from which we read the solution 

[2.5, 0.75, 0, 0, 0, 7.5, 11, ov 
This vector becomes the updated Yc. 

9c = YJ'Yc = [0, 7.5, 11, 0, 2.5, 0.75, 0, OJ 

Xt X2 XJ St Ut 

2.5 
0.75 
0 
0 
0 
7.5 

11 
0 

U2 

= 11.25 ;o! 0 

UJ Vt 

0 -8.75 -13.50 0 0 -1.375 -1.250 0 

-8.75 0.2500 1 0 -0.3750 0.06250 0 0 0.06250 1.375 
XJ -13.50 0.5000* 0 1 -0.2500 -0.1250 0 0 -0.1250 1.250 
U2 -1.375 0.5000 0 0 -0.7500 2.125 1 0 4.125 8.750 
UJ -1.250 0.9995 0 0 -0.5003 -3.251 0 1 -2.251 13.50 

(Zj- Cj): -10.87 0 0 8.313 2.283 0 0 -1.718 -57.81 

Tableau 4 

Xt X2 XJ St Ut U2 UJ Vt 

X2 0 1 -0.5000 -0.2500 0.1250 0 0 0.1250 0.7500 
Xt 1 0 2.000 -0.5000 -0.2500 0 0 -0.2500 2.500 
u2 0 0 -1.000 -0.5000 2.250 1 0 4.250* 7.500 
UJ 0 0 -1.999 0.0006 -3.001 0 1 -2.001 11.00 

0 0 21.74 2.878 -0.4345 0 0 -4.436 -30.64 

TableauS 

Xt X2 XJ St Ut u2 UJ Vt 

X2 0 1 -0.4706 -0.2353 0.05883 -0.02941 0 0 0.5294 
Xt 1 0 1.941 -0.5294 -0.1177 0.05883 0 0 2.941 
VI 0 0 -0.2353 -0.1176 0.5294 0.2353 0 1 1.765 
UJ 0 0 -2.470 -0.2347 -1.942 0.4708 1 0 14.53 

0 0 20.70 2.356 1.914 1.044 0 0 -22.81 

Tableau 6 
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STEPS 

pTyc = [0, 8.75, 13.5, 0, 0, 1.375, 1.25, 0] 

which is not less than or equal to 

~9 = ~(57.81) = 28.91 

2.5 
0.75 

0 
0 
0 

7.5 
11 
0 
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= 30.63 

STEP 3 Since P has not been updated, the objective remains unchanged and the tableau of interest 
remains Tableau 5. Applying one iteration of the simplex method to this tableau, we obtain 
Tableau 6. The solution defined by Tableau 6 becomes the updated Yc, namely 

STEP4 

Yc = [2.941, 0.5294, 0, 0, 0, 0, 14.53, 1.765jT 

2.941 
0.5294 

0 

9c = Y[Yc = [0, 0, 14.53, 1.765, 2.941, 0.5294, 0, 0) 
0 

=0 
0 
0 

14.53 
1.765 

Therefore, the first three components of Y c constitute the optimal solution to the original 
minimization program; that is, xt = 2.941, x~ = 0.5294, and x~ = 0, with z* = 3.235. Com­
pare with the solution found in Problem 12.10. 

13.4 Determine the covariance matrix for the data in Table 13-1, which are returns (in cents) per 
dollar invested. 

Table 13-1 

Years 

1 2 3 4 5 6 

Investment 1 0 20 0 20 0 20 

Investment 2 0 0 30 0 0 30 

To apply (13.8), it is convenient to retabulate the data as in Table 13-2. 

Table 13-2 

k xu X2k xik X~k XUX2k 

1 0 0 0 0 0 
2 20 0 400 0 0 
3 0 30 0 900 0 
4 20 0 400 0 0 
5 0 0 0 0 0 
6 20 30 400 900 600 

TOTALS 60 60 1200 1800 600 
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Then, 

u~2 = 1soo _ (6W = 200 
6 36 

and the covariance matrix is 

c = [100 0 ] 
0 200 

13.5 Determine the covariance matrix for the data in Table 13-3, which are returns (in cents) per 
dollar invested. 

Table 13-3 

Years 

1 2 3 4 5 

Investment 1 10 4 12 13 6 

Investment 2 6 9 6 5 9 

Investment 3 17 1 11 19 2 

Proceed as in Problem 13.4. 

k xu 

1 10 
2 4 
3 12 
4 13 
5 6 

TOTALS 45 

From Table 13-4, 

and so 

Table 13-4 

X2k XJk x?k X~k 

6 17 100 36 
9 1 16 81 
6 11 144 36 
5 19 169 25 
9 2 36 81 

35 50 465 259 

u?I = 465- (45)2 = 12 
5 25 

0"~2 = 2;9 - <~t = 2.8 

uj3 = 776- (5W = 55 2 
5 25 

C=[ ~~.6 
23 

X~k XUX2k X!kXJk 

289 60 170 
1 36 4 

121 72 132 
361 65 247 

4 54 12 

776 287 565 

u?2 = U~t = 2~7- (451~35) = -5.6 

u?3 = uj, = 565 _ (45)(50) = 23 
5 25 

2 2 290 (35)(50) 
0"23 = 0"32 = 5- ----zs- = -12 

-5.6 23 ] 
2.8 -12 

-12 55.2 

X2kXJk 

102 
9 

66 
95 
18 

290 

13.6 An individual with $10 000 to invest has identified three mutual funds as attractive oppor­
tunities. Over the last 5 years, dividend payments (in cents per dollar invested) have been as 
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shown in Table 13-3, and the individual assumes that these payments are indicative of what 
can be expected in the future. This particular individual has two requirements: (1) the 
combined expected yearly return from his investments must be no less than $800 (the amount 
$10 000 would earn at 8 percent interest) and (2) the variance in future, yearly, dividend 
payments should be as small as possible. How much should this individual invest in each 
fund to achieve these requirements? 

There are p = 5 time periods for which data are provided; from (13.4) or Table 13-4, 

Here F = $10 000 and L = $800 = 80 OOOt, so that the constraints in (13.9) become 

X1 + Xz + X3 = 10 000 

9xl + 1xz + 10x3 2:80 000 

Using the covariances calculated in Problem 13.5, we have for the objective: 

minimize: z = 12xt + 2.8x~ + 55.2x~- 5.6xlxz 

+ 23X1X3- 5.6XzXI- 12XzXJ + 23X3Xl- 12XJX2 

(1) 

(2) 

The system (1) and (2), augmented by nonnegativity conditions on each variable, constitutes a 
quadratic program which was put in standard form in Problem 12.11. Its solution, either by the method 
of Frank and Wolfe or from the Kuhn-Tucker conditions directly (Problem 12.33), is xt = x~ = $5000, 
x! = 0. Consequently, the individual should divide funds evenly between the first two opportunities 
and not invest at all in the third. 

13.7 A financial adviser must recommend a portfolio consisting of two investments to a client 
having $15 000 to invest. One investment returns 20 percent every other year, while the 
second investment returns 30 percent every third year. Determine the best investment mix 
for the portfolio if the client's only stipulation is that the combined, yearly, expected return 
vary as little as possible. 

The relevant data for each investment are presented in Table 13-1. For these data, 

so that the total expected return is 

E = E1X1 + Ezxz = 10(x1 + xz) = 10(15 000) = 150 OOOt 

regardless of the investment mix. Therefore, the sole constraint for the problem is 

X1 + Xz = 15 000 

In terms of the covariances calculated in Problem 13.4, the objective is to 

minimize: z = 100xt + 200x~ 

and we have the additional conditions 

(1) 

(2) 

(3) 

The quadratic program (1), (2), (3) is easily solved (graphically or from the Kuhn-Tucker condi­
tions), yielding xt = $10 000, x~ = $5000, with z* = 1.5 x 1010 (in units of f2

). 

13.8 Verify that the Kuhn-Tucker conditions for the program described in Problem 13.1 have the 
forms (13.2) and (13.3). 

The Kuhn-Tucker conditions for this program were derived in Problem 12.10; in particular, in (8), .(1). 
through (3), and (13). Setting s1 = x~, v1 =A~, u1 ~ Az, uz = AJ, UJ = A4, and rearranging-, we can w~ite · 
these equations as 
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2x,- 4x2 + 6x, 

-4x, + 10x2- 12x, 

6x,- 12x2 + 20x, 

v,s,= 0 

u,x,= 0 

U2X2 = 0 

u,x, = 0 

-4 

v,= 2 

- 2v, = -10 

(PART I 

The first set of four equations is precisely (13.2), as shown by (1) of Problem 13.2. The second set of 
four equations may be combined into the single equation 

which has the form (13.3), as shown by (2) of Problem 13.2. Note that solving this one equation is 
equivalent to solving the four equations from which it came, since all the variables are required to be 
nonnegative. 

Supplementary Problems 

13.9 Put the following program in standard form: 

minimize: z = 24xi + 14x~ + 46x5- 28x,x2- 24x,x3 + 34x2x3 

subject to: llx, + 9x2 + 12x,;?; 1000 

X2 + X,= 40 

with: all variables nonnegative 

13.10 Determine the Kuhn-Tucker system for the standardized program of Problem 13.9. 

Use the method of Frank and Wolfe to solve Problems 13.11, 13.12, and 13.13. Check your answer to 
Problem 13.12 by the graphical method. 

13.11 Problem 13.9. 

13.12 

13.13 

maximize: z = -x~- 2x~ + 2x, + 4x2 

subject to: 2x, + x2 ~ 8 

Xt + 2x2;?; 2 

with: .1:, and X2 nonnegative 

maximize: z =lOx~+ 20x~+ 30x5+ 10x,x2- Sx,x,- 6x2x,+ x, + 2x2- x, 

subject to: x, + 2x2 + x 3 ~ 10 

with: all variables nonnegative 
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13.14 A corporation requires 6 million dollars to finance a new manufacturing process, and three different 
banks have agreed to supply all or part of this amount. Although each bank insists that the loan plus 
interest charges be repaid over 6 years, the repayment schedules differ from bank to bank, as shown in 
Table 13-5. 

Table 13-5 

Percent of Principal To Be Repaid Each Year 

Year 1 Year 2 Year3 Year4 Year5 Year6 

Bank 1 0 0 30 40 50 55 
Bank 2 5 15 25 35 40 45 
Bank 3 40 40 0 35 15 15 

The corporation feels it is advantageous to borrow in such a manner that the total yearly payments on 
the loan are as nearly equal as possible, yet it does not wish to pay more than 4 million dollars in total 
interest charges. Set up a mathematical program that will determine the amount of money to be 
borrowed from each bank, such that the corporation's objectives are realized. 

13.15 By a known result in matrix algebra, the quadratic program with equality constraints, 

optimize: z = XTQX + DTX 

subject to: AX= 8 

may be solved in closed form, provided Q is definite (negative definite for a maximization or positive 
definite for a minimization) and the rows of A are linearly independent. Explicitly, 

det[·--~~=~~~---~~-~-~~~~~~2] 
*- (B + !AQ-ID)T I Otxl - 1 T -I 

z - det AQ tAT ID Q D 

with a more complicated expression for X*. Use this result to check the value of z* in Problem 13.7. 

13.16 Rework Problem 12.6, in the form 

by use of Problem 13.15. 

maximize: 8 + z = -3xt- x~ + 6x1- Zx2 

subject to: 3xt + x2 = 5 



Chapter 14 
Deterministic Dynamic Programming 

MULTISTAGE DECISION PROCESSES 

A multistage decision process is a process that can be separated into a number of sequential steps, 
or stages, which may be completed in one or more ways. The options for completing the stages are 
called decisions. A policy is a sequence of decisions, one for each stage of the process. 

The condition of the process at a given stage is called the state at that stage; each decision effects 
a transition from the current state to a state associated with the next stage. A multistage decision 
process is finite if there are only a finite number of stages in the process and a finite number of states 
associated with each stage. 

Many multistage decision processes have returns (costs or benefits) associated with each decision, 
and these returns may vary with both the stage and state of the process. The objective in analyzing 
such processes is to determine an optimal policy, one that results in the best total return. 

Example 14.1 In Problem 1.15, the process of determining how much to invest in each opportunity in order to 
maximize the total return is a three-stage decision process. Consideration of opportunity i constitutes stage 
i (i = 1, 2, 3). The state of the process at stage i is the amount of funds still available for investment at stage 
i. For stage 1, the beginning of the process, there are 4 units of money available; hence the state is 4. For 
stages 2 and 3, the states can be 0, 1, 2, 3, or 4, depending on the allocations (decisions) at previous stages. The 
decision at stage i is represented by the variable X;; the possible values of x; are the integers from 0 to the state 
at stage i, inclusive. 

An optimal policy for the process is determined in Problem 14.1. 

A multistage decision process is deterministic if the outcome of each decision (in particular, the 
state produced by the decision) is known exactly. This chapter covers only those multistage 
processes which are both finite and deterministic. Finite, stochastic processes are discussed in 
Chapter 18; infinite processes are introduced in Chapter 20. 

A MATHEMATICAL PROGRAM 

The mathematical program 

optimize: z = /J(x1) + h(x2) + · · · + fn(Xn) 

subject to: X1 + X2 + · · · + Xn s b (14.1) 

with: all variables nonnegative and integral 

in which f 1(x 1),/2(x2), ••• .fn(Xn) are known (nonlinear) functions of a single variable and b is a known 
nonnegative integer, models an important class of multistage decision processes. Here the number 
of stages is n. Stage 1 involves the specification of decision variable x~. with a resulting contribution 
/J(xJ) to the total return; etc. The states are 0, 1, 2, ... , b, representing possible values for the 
number of units available for allocation. All stages after the first have these same states associated 
with them; stage 1 has the single state b. 

Example 14.2 Program (14.1), with n = 3 and b = 4, models Problem 1.15. 

154 
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DYNAMIC PROGRAMMING 

Dynamic programming is an approach for optimizing multistage decision processes. It is based 
on Bellman's 

Principle of optimality. An optimal policy has the property that, regardless of the decisions taken to 
enter a particular state in a particular stage, the remaining decisions must constitute an optimal policy 
for leaving that state. 

To implement this principle, begin with the last stage of an n-stage process and determine for 
each state the best policy for leaving that state and completing the process, assuming that all preceding 
stages have been completed. Then move backwards through the process, stage by stage. At each 
stage, determine the best policy for leaving each state and completing the process, assuming that all 
preceding stages have been completed and making use of the results already obtained for the suc­
ceeding stage. In doing so, the entries of Table 14-1 will be calculated, where 

u =the state variable, whose values specify the states 
m1(u) =optimum return from completing the process beginning at stage j in state u 
di(u) =decision taken at stage j that achieves mi(u) 

Table 14-1 

u 

0 1 2 3 ... 

m.(u) 

d.(u) 
} Last stage 

m.-t(u) 

d.-t(U) 
} Next-to-last stage 

... . .......... ····· ............. 

m,(u) 

dt(u) 
} First stage 

The entries corresponding to the last stage of the process, m.(u) and d.(u), are generally straight­
forward to compute. (See Problems 14.1 and 14.3.) The remaining entries are obtained recur­
sively; that is, the entries for the jth stage (j = 1, 2, ... , n- 1) are determined as functions of the 
entries for the (j + 1)st stage. The recursion formula is problem dependent, and must be obtained 
anew for each different type of multistage process. (See Problems 14.5 and 14.8.) 

For simplicity, Table 14-1 has been drawn as though each stage had the same set of states. 
While this can always be brought about artificially (by suitably penalizing the return functions mi ), it is 
often more natural to use different state variables, each with its own range of values, for the different 
stages. Such use, of course, in no way alters the application of the principle of optimality. (See 
Problems 14.19 and 14.20.) 

The dynamic programming approach is particularly well suited to those processes modeled by 
system (14.1}-processes in which each decision pays off separately, independent of previous 
decisions. For system (14.1), the values of m.(u) for u = 0, 1, ... , b are given by the formula 

m.(u) =optimum {f.(x)} (14.2) 
Osxsu 

The recursion formula is (see Problem 14.1) 

mi(u) =optimum {h(x) + mi+I(u- x)} (14.3) 
Osxsu 
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for j = n- 1, n- 2, ... , 1. In (14.2), the decision variable x [which is denoted x" in (14.1)] runs 
through integral values, as does x (=xi) in (14.3). That value of x which yields the optimum in 
(14.2) is taken as dn(u), and that value of x which yields the optimum in (14.3) is taken as di(u). If 
more than one value of x yields either optimum, arbitrarily choose one as the optimal decision. The 
optimal solution to program (14.1) is z* = m 1(b), the optimal return from completing the process 
beginning at stage 1 with b units available for allocation. With z * determined, the optimal decisions 
x T, x ~, ... , x: are found sequentially from 

xT = d1(b) 

x~ = d2(b- xi) 

x!=d3(b-xT-xn 

DYNAMIC PROGRAMMING WITH DISCOUNTING 

(14.4) 

If money earns interest at the rate i per period, an amount P(n) due n periods in the future has 
the present (or discounted) value 

P(O) = a"P(n) where 
1 

a= 1 + i (14.5) 

Discounting, the replacement of all dollar sums in the future by their present values, is often 
incorporated in those multistage decision processes in which the stages represent time periods and 
the objective is to optimize a monetary quantity. In the solution by dynamic programming, the 
recurrence formula for mi(u), the best return beginning in stage j and state u, involves terms of the 
form mi+c(y), the best return beginning in stage j + c (c time periods after stage j) and state y. [See, 
for example, (14.3).] If mi+c(Y) is multiplied by a', where a is the above-defined discount factor, 
then mi+c(Y) is discounted to its present value at the beginning of stage j. It follows that m1(u) will 
be discounted to the beginning of stage 1, which is the start of the process. (See Problem 14.10.) 

Solved Problems 

14.1 Determine an optimal policy for Problem 1.15 (see Example 14.1). 

We begin by considering the last stage of the process, stage 3, under the assumption that all previous 
stages, stages 1 and 2, have been completed. That is, allocations to investments 1 and 2 have been made 
(although, at this time, we do not know what they are), and we are to complete the process by allocating units 
of money to investment 3. Since we do not know how many units were allocated to the first two 
investments, we do not know how many units are available for investment 3; we must therefore consider all 
possibilities. There will be either 0, 1, 2, 3, or 4 units available. 

No matter how many units of money are available at stage 3, it is clear from the definition of /J(x) in 
Table 1-2 that the best way to complete the process is to allocate all the available units to investment 
3. The same conclusion follows from applying (14.2). Thus, 



CHAP. 14] DETERMINISTIC DYNAMIC PROGRAMMING 157 

mJ(4) = max {/J(O), /3(1),/3(2), /3(3), /3(4)} 

= max {0, 1, 4, 5, 8} = 8 with dJ(4) = 4 

mJ(3) = max {/J(O), /3(1), /3(2), /3(3)} 

= max {0, 1, 4, 5} = 5 with dJ(3) = 3 

mJ(2) = max {/J(O), /3(1), /3(2)} 

= max {0, 1, 4} = 4 with dJ(2) = 2 

mJ(1) =max {/J(0),/3(1)} =max {0, 1} = 1 with d3(1) = 1 

mJ(O) =max {/J(O)} =max {0} = 0 with dJ(O) = 0 

These results give us the first two rows in the tabular solution, Table 14-2. 

Table 14-2 

u 

0 1 2 3 4 

m3(u) 0 1 4 5 8 

d3(u) 0 1 2 3 4 

m2(u) 0 1 4 6 8 

d2(u) 0 1 0 3 0 

mt(u) . . . ... . .. . .. 9 

dt(u) . . . . . . ... . .. 2 

Having completed stage 3, we next consider stage 2 under the assumption that stage 1 has been 
completed (although, at this time, we do not know how). Since we do not know how many units were 
allocated to investment 1, we do not know how many units are available for investment 2; we must 
therefore consider all possibilities. 

One possibility is that 4 units are available at stage 2, which presupposes that no units were allocated 
to investment 1. Now, all or some of these 4 units can be allocated to investment 2, with the remainder 
available for stage 3. If x of these 4 units are allocated to investment 2, the return is /2(x ), and the 
remaining 4- x units are available for stage 3. But we have already found the best continuation from 
stage 3 when 4- x units are at hand; namely, mJ(4- x). The total return, therefore, is /2(x)+ 
mJ(4- x); and the value of x (x = 0, 1, 2, 3, 4) that maximizes this total return represents the optimal 
decision at stage 2 with 4 units available. Formula (14.3), with j = 2 and u = 4, simply formalizes this 
conclusion. 

= max {0 + 8, 1 + 5, 3 + 4, 6 + 1, 7 + 0} = 8 with d2(4) = 0. 

Similarly treating the other possibilities at stage 2, we obtain: 

m2(3) = max {h(O) + mJ(3- 0), /2(1) + mJ(3- 1), /2(2) + mJ(3- 2), /2(3) + mJ(3- 3)} 

= max {0 + 5, 1 + 4, 3 + 1, 6 + 0} = 6 with d2(3) =- 3 

m2(2) =max {h(O) + mJ(2- 0), /2(1) + mJ(2- 1), /2(2) + mJ(2- 2)} 

"' max {0 + 4, 1 + 1, 3 + 0} = 4 with d2(2) = 0 

m2(1) =- max {h(O) + mJ(1- 0), /2(1) + mJ(1- 1)} 

"' max {0 + 1, 1 + 0} =- 1 with d2(1) = 1 (breaking the tie arbitrarily) 

m2(0) = max {h(O) + mJ(O- 0)} = max {0 + 0} = 0 with d2(0) = 0 

Collecting the calculations for stage 2, we obtain the third and fourth rows of Table 14-2. 
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Having completed stage 2, we now turn to stage 1. There is only one state associated with this 
stage, u = 4. 

m 1(4) =max {/1(0)+ m2(4- 0), /1(1)+ m2(4-1), /!(2)+ m2(4- 2), /1(3)+ m2(4- 3), /!(4)+ m2(4- 4)} 

= max {0 + 8, 2 + 6, 5 + 4, 6 + 1, 7 + 0} o= 9 with di(4) = 2 

With these data we complete Table 14-2. 
The maximum return that can be realized from this three-stage investment program beginning with 

4 units is m 1(4) = 9 units. To achieve this return, allocate d!(4) = 2 units to investment 1, leaving 4- 2 
= 2 units for stage 2. But d2(2) = 0, indicating that no units should be expended at this stage if only 2 
units are available. Thus, 2 units remain for stage 3. Since d,(2) = 2, both units should be allocated to 
investment 3. These conclusions are formalized by equations (14.4). The optimal policy, therefore, is 
to allocate 2 units to investment 1, 0 units to investment 2, and 2 units to investment 3. 

14.2 An independent trucker has 8m3 of available space on a truck scheduled to depart for New 
York City. A distributor with large quantities of three different appliances, all destined for 
New York City, has offered the trucker the following fees to transport as many items as the 
truck can accommodate: 

Fee, Volume, 
Appliance $/item m3/item 

I 11 1 
II 32 3 

III 58 5 

How many items of each appliance should the trucker accept to maximize shipping fees 
without exceeding the truck's available capacity? 

This problem can be viewed as a three-stage process, involving allocations of space to appliances I, 
II, and Ill, respectively. It can be modeled by program (14.1 ), with n = 3, b = 8, if x1 (j = 1, 2, 3) is defined 
as the number of cubic meters of appliance j to be shipped, and if/i(x1), the return from allocating x1 to stage j, 
is defined by Table 14-3. The state at a given stage is the number of cubic meters of space still unoccupied. 

Table 14-3 

I~ 0 1 2 3 4 5 6 7 8 

!I(x) 0 11 22 33 44 55 66 77 88 

h(x) 0 0 0 32 32 32 64 64 64 

h(x) 0 0 0 0 0 58 58 58 58 

The first row of Table 14-3 is straightforward, since each additional cubic meter allocated to appli­
ance I brings an additional $11 return. To generate the second row of the table, note that each 
appliance II occupies 3 m3

, so that until at least 3 m3 of space is available, no item of this type can be 
shipped and no return realized. If 3, 4, or 5 m3 is allocated to appliance II, only one item can be 
accommodated, for a net return of $32. If 6, 7 or 8 m' is allocated, then two items can be shipped, for a 
net return of $64. A similar analysis holds for appliance III. No return is realized until at least 5 m3 is 
allocated to it; and if 5, 6, 7, or 8m3 is allocated, then only one appliance III can be shipped, for a net 
return of $58. 

The model, program (14.1 ), is solved by use of (14.2) and (14.3), exactly as in Problem 14.1. The 
results are exhibited in Table 14-4; all ties were broken by choosing the smallest maximizing x as 
d1(u). Table 14-4 shows that the best total return the trucker can obtain, starting stage 1 with 8 m3 of 

' 
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available space, is m1(8) = $91. To achieve this, 3m3 [d1(8) = 3] must be allocated to appliance I, 
leaving 5 m3 for the following stages. No volume should be allocated to appliance II [d2(5) = 0], leaving 
5 m3 for stage 3, all of which should be assigned to appliance III [d3(5) = 5]. In terms of items, the 
trucker should take three items of appliance I and one item of appliance III. 

Table 14-4 

u 

0 1 2 3 4 

m3(u) 0 0 0 0 0 

d3(u) 0 0 0 0 0 

m2(u) 0 0 0 32 32 

d2(u) 0 0 0 3 3 

mt(u) . . . . .. . . . . . . . . . 

dt(u) . . . . .. ... . . . . . . 

14.3 Convert the following program into system (14.1): 

maximize: z = lly1 + 32y2 + 58y3 

subject to: Y1 + 3y2 + Sy3 s 8 

5 6 7 

58 58 58 

5 5 5 

58 64 64 

0 6 6 

. . . ... . .. 

. . . . . . . .. 

with: all variables nonnegative and integral 

8 

58 

5 

90 

3 

91 

3 

(1) 

This program is a mathematical model for Problem 14.2 if we designate y1 (j = 1, 2, 3) as the 
number of items (in contrast to the number of cubic meters) of appliance j to be shipped. The linear 
constraint models the volume limitation, the coefficient of y1 being the volume per item of appliance 
j. As was shown in Problem 14.2, a mathematical model for this program in the form of (14.1)-which 
has unit coefficients in the inequality constraint-is obtained if new variables x1 are defined to denote the 
number of cubic meters of each appliance to be shipped. We then have 

subject to: Xt + x2 + X3 s 8 

with: all variables nonnegative and integral 

where the return functions /;(x) are defined by Table 14-3. 
Observe that (1) is not taken into the form (14.1) by the linear transformation 

Xt= Yt 

(2) 

Although this transformation produces the desired type of objective function and the desired type of 
inequality constraint, it maps the set of nonnegative integer points (y~, y2, y3) into a subset of the 
nonnegative integer points (x~, x2, x3). One needs precisely the functions /;(x) defined in Problem 14.2 
to make possible the expansion of this subset into the whole set. 

14.4 Convert the following program into system (14.1 ): 

maximize: z = gi(YI) + g2(y2) + g3(y3) + g4(y4) 

subject to: 2yl + Y2 + 6y3 + 3y4 s 9 

with: all variables nonnegative and integral 

where the gJ(y) (j = 1, 2, 3, 4) are defined in Table 14-5. 
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Table 14-5 

I~ 0 1 2 3 4 5 

KI(Y) 0 4 8 11 14 17 

K2(Y) 0 2 4 6 8 10 

g,(y) 0 1 2 3 6 8 

g4(y) 0 1 7 9 14 16 

Mimicking the approach used in Problem 14.3, we think of 
y1 as the number of items of product j to be shipped in a certain 
truck. Table 14-5 then represents a schedule of shipping fees, 
while the linear constraint models the limitation on the total 
volume that can be accommodated, 9 units. The coefficient of 
y1 in this constraint is interpreted as the volume occupied by one 
item of product j (see Table 14-6). 

6 

19 

12 

11 

21 

(PART I 

7 8 9 

21 22 23 

14 16 18 

15 20 26 

23 25 27 

Table 14-6 

Product 1 2 3 4 

Volume/Item 2 1 6 3 

We now designate new variables x1 (j = l, 2, 3, 4) as the number of units of volume of product j to 
be shipped. Program (1) is equivalent to the following program of the form (14.1): 

maximize: z = /I(xi) + /2(x2) + /J(x,) + f4(x4) 

subject to: XI+ x;, + x, + X4 s 9 (2) 

with: all variables nonnegative and integral 

where /;(x1) denotes the return from allocating x1 units of volume to product j. These functions are 
derived from Tables 14-5 and 14-6; for example, 

f 4(7) =return from shipping 7 units of volume of product 4 

= return from shipping 2 items of product 4, since each 
item of product 4 requires 3 units of volume 

= g4(2) = 7 

Continuing in this fashion, we complete Table 14-7. 

Table 14-7 

I~ 0 1 2 3 4 5 6 7 8 9 

/I(x) 0 0 4 4 8 8 11 11 14 14 

h(x) 0 2 4 6 8 10 12 14 16 18 

h(x) 0 0 0 0 0 0 1 1 1 1 

!4(x) 0 0 0 1 1 1 7 7 7 9 

14.5 Establish a recursion formula analogous to (14.3) for the following problem. A small firm can 
manufacture up to four computers weekly, and has agreed to deliver in each of the next 4 
weeks three, two, four, and two computers, respectively. Production costs are a function 
of the number of computers manufactured, and are given (in thousands of dollars) as 
follows: 
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Units Produced, x 0 1 2 3 4 

Cost, f(x) 4 13 19 27 32 

Computers can be delivered to customers at the end of the same week in which they are manu­
factured, or they can be stored for future delivery at a cost of $4000 per week. Because of limited 
warehouse facilities, the company can store no more than three computers at a time. Current 
inventory is zero, and the firm desires no inventory at the end of week 4. How many computers 
should the firm manufacture in each of the next 4 weeks to meet all demands at a minimum total 
cost? 

As shown in Chapter 9, production problems of this sort are modeled as transportation problems. 
Such models do not have the form (14.1); hence (14.3) is not applicable. Production problems are, 
however, multistage decision processes that can be solved by dynamic programming. 

The present production problem is a four-stage process, with stage j representing the jth week 
(j = 1, 2, 3, 4). The state u at stage j is the number of computers in inventory at the beginning of week 
j. Let 

m1(u)"" the minimum cost of completing the production schedule beginning at stage j in state u 

d1(u) =the production schedule for stage j that achieves m1(u) 

D1 = the demand in stage j 

lj (u)"" the inventory cost charged against stage j when the state is u 

fj (x)"" the cost of producing x computers in stage j 

Consider the case where the company enters stage j with u computers in inventory. The company may 
produce any number of computers up to its capacity during this stage, provided the sum of its production 
level and its inventory level is at least as large as the demand D1• Any amount in excess of D1 is stored 
in inventory for the next stage. In particular, if x computers are produced in stage j, a production 
cost jj(x) is incurred. The u units in stock generate a storage cost of lj(u), for a total cost in period j 
of fj(x) + lj(u). This leaves u + x- D1 units in inventory for stage j + 1, and the minimum cost for 
completing the process at that point is m;+t(u + x- D1 ). Hence the total cost for completing the process 
beginning at stage j with a production schedule of x units is fj(x) + Jj(u) + m;+l(u + x- D1 ). The best 
decision for stage j with u units in stock is to produce that amount x which minimizes this cost. Ac­
cordingly, for j = 1, 2, 3, 

m1(u) = min {Jj(x) + lj(u) + m;+l(u + x- D1 )} 
X 

(1) 
= lj(u) +min {Jj(x) + m;+l(u + x- D;)} 

X 

wherein x runs through the values 0, 1, 2, 3, 4. To guarantee that 

0 s u + x- D1 s 3 (storage capacity) 

we set m;+ 1(u) equal to a prohibitively large penalty cost, M, whenever u < 0 or u > 3. 
For the problem at hand, both the inventory costs and the production costs are independent of the 

stage, and are given respectively by lj(u)= 4u (thousand-dollar units) and fj(x)= f(x), as defined in 
tbe production cost table. The demands are D1 = 3, D2 = 2, DJ = 4, and D4 = 2. Relation (1) sim­
plifies to 

m1(u)=4u+ min {f(x)+m;+l(u+x-D1)} 
X= 0,1,2,3,4 

(2) 

14.6 Solve the problem formulated in Problem 14.5. 

There are either zero, one, two, or three computers in stock at the beginning of week 4. Since no 
inventory is desired at the end of week 4, the optimal decision at stage 4 is to produce only that portion 
of the fourth week's demand, D4 = 2, that cannot be met from inventory. Difficulty arises only if the 
incoming inventory is three computers, which exceeds the demand. To prevent this situation in the final 
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policy, we assign it a very high penalty cost to completion, 1000 (thousand-dollar units). The cost to 
completion for all other states is the holding cost of the current inventory plus the production cost of the 
shortfall between demand and inventory. Thus, 

m4(3)= 1000 

m4(2) =storage cost of two computers and production cost of zero computers 

= 4(2) + 4 = 12 with d4(2) = 0 

m4(1) =storage cost of one computer and production cost of one computer 

= 4(1)+ 13= 17 with d4(1)= 1 

m4(0) =storage cost of zero computers and production cost of two computers 

= 4(0) + 19 = 19 with d4(0) = 2 

Collecting these results, we have the first two rows of Table 14-8. The remaining entries are obtained 
by stepwise application of (2) of Problem 14.5, for j = 3, 2, 1. Again, M = 1000 is used to rule out 
impossible inventory states. 

Table 14-8 

u 

--
0 1 2 3 

m4(u) 19 17 12 1000 

d4(u) 2 1 0 ... 

m3(u) 51 50 46 44 

d 3(u) 4 3 2 1 

m2(u) 70 68 63 66 

d2(u) 2 1 0 0 

mt(u) 97 . . . . .. ... 

dt(U) 3 . .. ... . .. 

It follows from Table 14-8 that the minimum production cost for completing the entire process 
beginning at stage 1 with 0 units in inventory is 

m dO)= $97 000 

To achieve this, the company must produce dt(O) = 3 computers in the first week, all of which are shipped 
immediately to customers. The company then enters week 2 with an inventory of zero, and must 
produce d2(0) = 2 computers, which again just meets demand. The optimal production level for stage 3 
with zero computers in inventory is d,(O) = 4, thereby exactly meeting demand; and the optimal pro­
duction level for stage 4 with zero computers in storage is d4(0) = 2. Thus, the optimal policy is to 
produce exactly the number of computers needed to satisfy the demand and never to have any in 
inventory. 

14.7 A manufacturer has an order from a railroad for 12 diesels to be delivered three per year for 
the next 4 years. Production data are displayed in Table 14-9. Diesels can be delivered at 
the end of the same year in which they are produced, or they can be stored by the manu­
facturer, at a cost of $30 000 per diesel per year, for shipment during a later year. Currently 
the manufacturer has one diesel in stock and would like to build this inventory to three at the 
end of four years. Determine a production schedule which will meet all requirements at a 
minimum total cost. 
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Table 14-9 

Years 

1 2 3 4 

Production Capacity 
I 2 3 4 (regular shift) 

Production Capacity 
2 2 3 2 (overtime shift) 

Cost per Diesel 
$350000 $370000 $395 000 $420000 (regular shift) 

Cost per Diesel $375 000 
(overtime shift) 

$400000 $430000 $465000 

We solve this problem by dynamic programming, using the notation and recursion formula (1) de­
veloped in Problem 14.5. There are four stages (years) to consider, with the decisions being the 
specifications of the production levels for the stages. The production capacity at each stage is the sum 
of the capacities for the regular and overtime shifts for that year. Setting fi(x) = M, a very large penalty 
cost, if a level x cannot be met in stage j, we reformulate the production data as Table 14-10, with all 
costs given in thousand-dollar units. 

Table 14-10 

'>\ 0 1 2 3 4 5 6 

/I(x) 0 350 725 1100 M M M 

fz(x) 0 370 740 1140 1540 M M 

h(x) 0 395 790 1185 1615 2045 2475 

/4(X) 0 420 840 1260 1680 2145 2610 

A final inventory of three diesels is most easily ensured by increasing the demand in the last stage by 
three. Thus, Dt = D 2 = DJ = 3, while D4 = 6. The maximum possible inventory at any stage is five 
diesels, achieved at the end of stage 3 under conditions of maximum production at all stages. Con­
sequently, we take the states to be u = 0, 1, 2, 3, 4, 5, and define ~(u) = 30u (independent of j). Also 
we set mi+t(u) = M (j = 1, 2, 3) whenever u > 5 or u < 0. 

Stage 4 If u diesels are in stock at the beginning of this stage, there is a holding charge of 30u thousand 
dollars. Then the minimum-cost decision for completing the process is to manufacture 

d4(u)= D4- u = 6- u 

diesels at a cost of /4(6- u). The minimum cost to completion is 

m4(u) == 30u + /4(6- u) 

These are the entries in the first two rows of Table 14-11. 

The remainder of Table 14-11 is obtained from the recursion formula, (1) of Problem 14.5, in which the 
minimization is over x == 0, ... , 6. Ties for d2(2), d2(l), and d2(0) were broken by choosing the smallest 
minimizing x in each case. It is seen that the minimum total cost to complete the process is 
mt(1) == $5 680 000. To achieve this cost, a production run of two diesels is required for stage 1 
[dt(1) = 2], leaving nothing in storage; a production run of three diesels is required for stage 2 [d2 (0) == 3), 
leaving nothing in storage; a production run of five diesels is necessary for stage 3 [d3(0) = 5], leaving two 
diesels in inventory; and a production run of four diesels is required for the last stage [d4(2) == 4). 
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Table 14-11 

u 

0 1 2 3 4 5 

m4(u) 2610 2175 1740 1350 960 570 

d4(u) 6 5 4 3 2 1 

m3(u) 3785 3385 2985 2620 2255 1890 

d3(u) 5 4 3 2 1 0 

mz(u) 4925 4555 4185 3815 3475 3135 

dz(u) 3 2 2 2 1 0 

m1(u) ... 5680 . . . . . . . . . . .. 

dt(U) . . . 2 . . . . . . ... . .. 

14.8 Establish a recursion formula for solving the following problem by dynamic programming. A 
vending machine company currently operates a 2-year-old machine at a certain loca­
tion. Table 14-12 gives estimates of upkeep, replacement cost, and income (all in dollars) for 
any machine at this location, as functions of the age of the machine. 

Table 14-12 

Age, u 

0 1 2 3 4 5 

Income, l(u) 10 000 9500 9200 8500 7300 6100 

Maintenance, M(u) 100 400 800 2000 2800 3300 

Replacement, R (u) ... 3500 4200 4900 5800 5900 

As a matter of policy, no machine is ever kept past its sixth anniversary and replacements are 
only with new machines. Determine a replacement policy that will maximize the total profit 
from this one location over the next 4 years. 

This equipment replacement problem is a four-stage process, with each stage representing a year in 
the time period under consideration. The states at a given stage are the possible ages of the machine 
entering that stage, i.e., u = 1, ... , 5. At each stage, the decision variable has only two values, which 
may be denoted KEEP (retain the current machine) and BUY (replace the current machine with a new 
machine). Define 

mi(u)=the maximum profit to be achieved beginning at stage j in state u 

di(u) =the decision at stage j that achieves mi(u) 

and let the functions I(u), M(u), and R(u) be defined by Table 14-12. If the company enters stage j 
with a u-year-old machine and decides to KEEP the machine, it will cost the firm M(u) to maintain the 
machine, for a yearly profit of I(u)- M (u ). The firm will then enter the next stage with a (u + 1 )-year­
old machine, and the best profit it can achieve with it (and its possible successors) is mi+l(u + 1). Thus, 
the overall profit to completion is 

I(u)- M(u) + mi+t(U + 1) (1) 
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If instead the company decides to sell the u-year-old machine at stage j and to BUY a new machine, it 
incurs a replacement cost of R(u). The new machine is 0 years old, so it will generate income /(0) and 
cost M(O) to maintain. The yearly profit would be /(0)- M(O)- R(u). The firm then enters the next 
stage with a 1-year-old machine, and the best subsequent profit it can achieve is mi+I(1). In this case, 
the overall profit to completion is 

/(0)- M(O)- R(u) + mi+I(1) 

The optimal decision at stage j produces the larger of the quantities (1) and (2); that is, 

mi(u) =max {I(u)- M(u) + mi+l(u + 1), /(0)- M(O)- R(u) + mi+l(l)} 

14.9 Solve the problem formulated in Problem 14.8. 

(2) 

(3) 

We observe that, beginning stage 1 with a 2-year-old machine, it is impossible to enter stage j 
(j = 1, ... , 4) with a machine older than j + 1 or of age j. Therefore, we will set mi(u) = -M, a very 
large negative return, whenever u > j + 1 or u = j. 

Stage 4 Formula (3) of Problem 14.8 also holds for j = 4 if we define m5(u)=O. Thus, 

m4(5) =max {1(5)- M(5), 1(0)- M(O)- R(5)} 

= max {6100- 3300, 10 000- 100- 5900} = 4000 

m4(4)= -M 

m4(3) =max {1(3)- M(3), /(0)- M(O)- R(3)} 

= max {8500- 2000, 10 000- 100- 4900} = 6500 

m4(2) =max {/(2)- M(2), /(0)- M(O)- R(2)} 

= max {9200- 800, 10 000- 100- 4200} = 8400 

m4(1) =max {I(l)- M(1), /(0)- M(O)- R(l)} 

=max {9500- 400, 10 000- 100- 3500} = 9100 

These results constitute the first two rows of Table 14-13. 

Table 14-13 

u 

I 2 3 4 

m4(u) 9100 8400 6500 -M 

d4(u) KEEP KEEP KEEP ... 

m3(u) 17 500 14900 -M 13200 

d3(u) KEEP KEEP ... BUY 

mz(u) 24000 -M 22500 -M 

dz(u) KEEP . . . BUY ... 

m1(u) ... 30900 . . . . .. 

d1(u) . . . KEEP . .. ... 

with d4(5) = BUY 

with d4(3) = KEEP 

with d4(2) = KEEP 

with d4(1) == KEEP 

5 

4000 

BUY 

-M 

. .. 

-M 

. .. 

. .. 

. .. 

The remaining entries in Table 14-13 are obtained by sequential application of the recursion formula 
for j = 3, 2, 1, with returns from impossible states penalized as previously stipulated. It follows from 
Table 14-13 that the company can acllieve a maximum total profit of $30 900 over the next 4 years, beginning 
with a 2-year-old machine. To do so, it should keep the current machinefor one more year, then buy a new 
machine and keep it for the remainder of the time period. 
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14.10 Solve the problem described in Problem 14.8 if the objective is to maximize the total discounted 
profit over the next 4 years under an effective interest rate of 10 percent per annum. 

Without discounting, the recursion formula for the optimal profit is (3) of Problem 14.8. In terms 
of present values for stage j, the formula becomes 

mi(u) = max {I(u)- M(u) + cnn,+t(U + 1), /(0)- M(O)-' R(u) +a mi+t(1)} (J) 

Here 
1 

a = T+ 0. 10 = 0.90909091 

We solve (J) by the same procedure as employed in Problem 14.9. The solution is presented in 
Table 14-14. Comparing with Table 14-13, we see that in this case discounting has not changed the 
optimal policy-it is still KEEP, BUY, KEEP, KEEP-but has reduced the optimal profit to $26 777. 

Table 14-14 

u 

1 2 3 4 5 

m 4(u) 9100 8400 6500 -M 4000 

d.(u) KEEP KEEP KEEP ... BUY 

m 3(u) 16 736 14309 -M 12 373 -M 

d3(u) KEEP KEEP . . . BUY ... 

mz(u) 22108 -M 20 215 -M -M 

dz(u) KEEP . . . BUY . . . ... 

mt(u) . . . 26777 ... . . . . .. 

dt(U) . . . KEEP . . . ... . .. 

Supplementary Problems 

14.11 David Jeremy, a certified public accountant, has offers from three different clients for his services. Each 
client would like Mr. Jeremy to work for him on a full-time basis; however, each client is willing to 
employ Mr. Jeremy for as many days of the week as he is prepared to give, for the fees shown in Table 
14-15. How many days should Mr. Jeremy devote to each client to maximize his weekly income? 

Table 14-15 

Number of Client I,$ Client 2, $ Client 3, $ 
Days 

0 0 0 0 
I 100 125 !50 
2 250 250 300 
3 400 375 400 
4 525 500 550 
5 600 625 650 
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14.12 Redo Problem 14.11 under the additional constraint that Mr. Jeremy work at least 1 day per week for 
each client. (Hint: Penalize the possibility of working 0 days for any client.) 

14.13 A cargo barge capable of transporting up to 10 tons of material has requests from four companies to 
carry their merchandise from St. Louis to New Orleans. Each company can supply as much mer­
chandise as the barge captain is willing to accept. The merchandise must be shipped in unit amounts; 
Table 14-16 gives the shipping fees. 

Table 14-16 

Company Weight of Shipping Fee, 
Merchandise, $/item 

tons/item 

I 1 10 
II 2 25 

III 3 45 
IV 4 60 

How many items of each company's merchandise should the barge captain accept to maximize the total 
shipping fees without exceeding the barge's capacity? 

14.14 Use dynamic programming to solve Problem 1.16, under the additional constraint that games be pro­
duced in whole numbers. (Hint: Count time in half-hour units.) 

14.15 maximize: z = 5xi + 5x~ + 3x3 

subject to: 3xl + 4x2 + XJ s 11 

with: all variables nonnegative and integral 

14.16 Use dynamic programming to solve Problem 1.8. 

14.17 Use dynamic programming to solve Problem 9.10. 

14.18 Obtain a recursion formula for, and then solve, the problem described in Problem 14.8, if, in addition to 
either keeping the current machine or buying a new model, the company may also purchase a used 
machine younger than its current model. Take the cost of replacing a u-year-old machine by an 
x-year-old machine to be the difference between the costs of their replacement by a new machine. For 
example, the cost of replacing a 3-year-old machine by a 1-year-old machine is $4900- $3500 = $1400. 

14.19 Establish a recursion formula for, and then solve, the following problem. A small construction company 
currently has a 1-year-old dump truck. Estimates of its upkeep, replacement costs, and the revenues it 
can be expected to generate, together with similar data for new trucks that may be purchased in the 
future, are given in Table 14-17; all amounts are in units of $1000. Trucks are never kept more than 3 
years, and replacements are only with new models. Determine a maximum-profit replacement policy for 
this company over the next 5 years. 
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Table 14-17 

Age Revenue Upkeep Replacement 

1 20 8 18 
Current 2 17 11 25 
Model 3 . . . ... 35 

0 21 1 6 
New 1 20 8 19 
Model 2 17 11 26 

3 . . . ... 36 

0 21 1 6 
Next 1 17 7 18 
Year's 2 15 12 26 
Model 3 . . . ... 36 

0 22 2 7 
Model 1 19 8 19 
Two Years 2 17 12 24 
Hence 3 . . . ... 37 

0 24 3 6 
Model 1 18 4 12 
Three Years 2 15 11 27 
Hence 3 . . . ... 37 

0 25 3 6 
Model 1 19 5 13 
Four Years 2 14 10 27 
Hence 3 . . . ... 38 

14.20 Solve the 3 x 3 assignment problem, with cost matrix 

Jobs 

2 3 

(see Chapter 9), by dynamic programming. For larger matrices, would this approach rival the Hun· 
garian method? 

14.21 Solve Problem 14.7 with discounting, if the effective interest rate is 7 percent per annum. 

14.22 Solve Problem 14.18 with discounting, if the effective interest rate is 8 percent per annum. 



Chapter 15 
Network Analysis 

NETWORKS 

A network is a set of points, called nodes, and a set of curves, called branches (or arcs or links), 
that connect certain pairs of nodes. Only those networks will be considered here in which a given 
pair of nodes is joined by at most one branch. We denote nodes by uppercase letters and branches 
by the nodes they connect. 

Example 15.1 Figure 15-1 is a network consisting of five nodes, labeled A through E, and six branches defined 
by the curves AB, AC, AD, BC, CD, and DE. 

Fig. 15-1 

A branch is oriented if it has a direction associated with it. Schematically, directions are 
indicated by arrows. The arrow on branch AB in Fig. 15-1 signifies that this branch is directed from 
A to B. Any movement along this branch must originate at A and terminate at B; movement from 
B to A is not permitted. 

Two branches are connected if they have a common node. In Fig. 15-1, branches AB and AC 
are connected, but branches AB and CD are not connected. A path is a sequence of connected 
branches such that in the alternation of nodes and branches no node is repeated. A network is 
connected if for each pair of nodes in the network there exists at least one path joining the pair. If 
the path is unique for each pair of nodes, the connected network is called a tree. Equivalently, a 
tree is a connected network having one more node than branch. 

Example 15.2 In Fig. 15-1, {ED, DA, AB}is a path, but the sequence of connected branches {CA, AD, DC, CB} 
is not a path, as node C occurs in it twice. The network is connected, and remains connected even if branches 
DA and AB are deleted. If, however, DE were deleted, the network would not be connected, since there would not 
be a path linking D with E. Because D and C are joined by three paths, the network is not a tree. 

169 
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MINIMUM-SPAN PROBLEMS 

A minimum-span problem involves a set of nodes and a set of proposed branches, none of them 
oriented. Each proposed branch has a nonnegative cost associated with it. The objective is to 
construct a connected network that contains all the nodes and is such that the sum of the costs 
associated with those branches actually used is a minimum. We shall suppose that there are enough 
proposed branches to ensure the existence of a solution. 

It is not hard to see that a minimum-span problem is always solved by a tree. (If two nodes in a 
connected network are joined by two paths, one of these paths must contain a branch whose removal 
does not disconnect the network. Removing such a branch can only lower the total cost.) A 
minimal spanning tree may be found by initially selecting any one node and determining which 
branch incident on the selected node has the smallest cost. This branch is accepted as part of the 
final network. The network is then completed iteratively. At each stage of the iterative process, 
attention is focused on those nodes already linked together. All branches linking these nodes to 
unconnected nodes are considered, and the cheapest such branch identified. Ties are broken 
arbitrarily. This branch is accepted as part of the final network. The iterative process terminates 
when all nodes have been linked. (See Problems 15.1 and 15.2.) 

If the costs are all distinct (this can always be brought about by infinitesimal changes), it can be 
proved that the minimal spanning tree is unique and is produced by the above algorithm for any 
choice of the starting node. 

SHORTEST-ROUTE PROBLEMS 

A shortest-route problem involves a connected network having a nonnegative cost associated 
with each branch. One node is designated as the source, and another node is designated as the 
sink. (These terms do not here imply an orientation of the branches of the network; they merely 
suggest the direction in which the solution algorithm will be applied.) The objective is to determine 
a path joining the source and the sink such that the sum of the costs associated with the branches in 
the path is a minimum. 

Cheapest-path problems are solved by the following algorithm, in the application of which all ties 
are to be broken arbitrarily. 

STEP 1 Construct a master list by tabulating under each node, in ascending order of cost, the 
branches incident on it. Each branch under a given node is written with that node as its 
first node. Omit from the list any branch having the source as its second node or having 
the sink as its first node. 

STEP 2 Star the source and assign it the value 0. Locate the cheapest branch incident on the 
source and circle it. Star the second node of this branch and assign this node a value 
equal to the cost of the branch. Delete from the master list all other branches that have 
the newly starred node as second node. 

STEP 3 If the newly starred node is the sink, go to Step 5. If not, go to Step 4. 

SIBP 4 Consider all starred nodes having uncircled branches under them in the current master 
list. For each one, add the value assigned to the node to the cost of the cheapest uncircled 
branch under it. Denote the smallest of these sums as M, and circle that branch whose cost 
contributed toM. Star the second node of this branch and assign it the value M. Delete 
from the master list all other branches having this newly starred node as second node. Go to 
Step 3. 

STEP 5 z * is the value assigned to the sink. A minimum-cost path is obtained recursively, 
beginning with the sink, by including in the path each circled branch whose second node 
belongs to the path. 

(See Problems 15.3 and 15.4.) From the operation of Step 4, we can see that the set of circled 
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branches produced by the algorithm constitutes a subtree of the original network, having the 
property that the unique distance (cost) in the subtree between the source and another node is equal 
to the shortest distance between these two nodes in the original network. In general, however, the 
subtree will not span the network. 

MAXIMAL-FLOW PROBLEMS 

The objective in a maximal-flow problem is to develop a shipping schedule that maximizes the 
amount of material sent between two points. The point of origin is called the source; the destination 
is called the sink. Various shipping lanes exist which link the source and sink directly or via 
intermediate locations called junctions. It is assumed that junctions cannot store material; that is, 
any material arriving at a junction is shipped immediately to another location. 

A maximal-flow problem can be modeled by a network. The source, sink, and junctions are 
represented by nodes, while the branches represent the conduits through which material is trans­
ported. Associated with each node N and each branch NM emanating from N is a nonnegative 
number, or capacity, representing the maximum amount of material that can be shipped through NM 
from N. 

Source Sink 

Fig. 15-2 

EXAMPLE 15.3 Figure 15-2 is a network having A as the source, D as the sink, and B and Cas junctions. 
The capacities of each branch for flows in the two directions are indicated near the ends of the branch. Note 
that 7 units can be shipped from A to C along AC, but 0 units can be shipped in the opposite direction; this 
asymmetry allows us, if we wish, to define an orientation of AC. In contrast, flows along BC can move in either 
direction, with a capacity of 5 units either way. 

Maximal-flow problems are solved by the following algorithm: 

STEP 1 Find a path from source to sink that can accommodate a positive flow of material. If none 
exists, go to Step 5. 

STEP 2 Determine the maximum flow that can be shipped along this path and denote it by k. 

STEP 3 Decrease the direct capacity (i.e., the capacity in the direction of flow of the k units) of 
each branch of this path by k and increase the reverse capacity by k. Add k units to the 
amount delivered to the sink. 

STEP 4 Go to Step 1. 

STEP 5 The maximal flow is the amount of material delivered to the sink. The optimal shipping 
schedule is determined by comparing the original network with the final network. Any 
reduction in capacity signifies a shipment. 

(See Problems 15.6 and 15.7.) 
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FINDING A POSITIVE-FLOW PATH 

The difficult aspect of the maximal-flow algorithm is Step !-identifying a path from source to 
sink with positive flow capacity. To discover such a path, first connect to the source all nodes that 
can be reached by a single branch having positive flow capacity in the forward direction (the direction 
out of the source). Connect these nodes to all new nodes that can be reached by single branches 
having positive forward capacities. Continue this process until either the sink is reached-in which 
case an appropriate path has been identified-or no new nodes can be reached from existing ones 
and the sink has not been reached-in which case no appropriate path exists. (See Problem 15.5.) 

Solved Problems 

15.1 Solve the minimum-span problem for the network given in Fig. 15-3. The numbers on the 
branches represent the costs of including the branches in the final network. 

We arbitrarily choose A as our starting nodt: and consider all branches incident on it; they are AE, AB, 
AD, and AC, with costs 10, 2, 1, and 4, respectively. Since AD is the cheapest, we add this branch to the 
solution, as shown in Fig. 15-4(a). Nodes A and D are now connected. 

Fig. 15-3 

We next consider all branches incident on either A or D that connect to other nodes. Such branches 
are AE, AB, AC, DB, DE, DF, DG, and DC, with costs 10, 2, 4, 1, 7, 10, 7, and 4, respectively. Since 
DB is the cheapest to include, we adjoin it to Fig. 15-4(a) and obtain Fig. 15-4(b). The connected 
nodes are now A, B, and D. 

We next consider all branches incident on A, B, or D that connect to other nodes. These are AE, 
AC, DE, DF, DG, and DC, with costs 10, 4, 7, 10, 7, and 4. The cheapest branch of interest is either 
AC or DC. We arbitrarily select DC and adjoin it to Fig. 15-4(b) to obtain Fig. 15-4(c). 

Continuing in this manner, we obtain sequentially Figs. 15-4(d) through 15-4(/). Figure 15-4(/) 
contains all the nodes; hence it is a minimal-span network. The minimum cost for connecting the 
network is 

z*=1+1+4+3+3+5=17 
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Fig. 15-4 

15.2 The National Park Service plans to develop a wilderness area for tourism. Four locations in 
the area are designated for automobile access. These sites, and the distances (in miles) 
between them, are listed in Table 15-1. To inflict the least harm on the environment, the Park 
Service wants to minimize the miles of roadway required to provide the desired accessibility. 
Determine how roads should be built to achieve this objective. 

Table 15-1 

Park Wild Majestic Sunset The 
Entrance Falls Rock Point Meadow 

Park Entrance 0 0 0 7.1 19.5 19.1 25.7 

Wild Falls 7.1 00 0 8.3 16.2 13.2 

Majestic Rock 19.5 8.3 0 0 0 18.1 5.2 

Sunset Point 19.1 16.2 18.1 00 0 17.2 

The Meadow 25.7 13.2 5.2 17.2 0 0 0 
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This is a minimum-span problem. The nodes are the four locations to be developed and the park 
entrance, while the proposed branches are the possible roadways linking the sites. The costs are the 
mileages. The complete network is shown in Fig. 15-5, where each site is represented by the first letter 
of its name. 

We arbitrarily select Park Entrance as the initial node. The costs of the branches incident on this 
node are listed in the first row of Table 15-1. Since the lowest cost is 7.1, we add the branch from Park 
Entrance to Wild Falls to the network. 

We next consider all branches joining either Park Entrance or Wild Falls to a new site. These are 
the branches from Park Entrance to Majestic Rock, Sunset Point, and The Meadow, as well as those 
from Wild Falls to the same three sites. Of these, the cheapest branch is the one from Wild Falls to 
Majestic Rock; so we adjoin it to the network. 

We next consider all branches to either Sunset Point or The Meadow from either Park Entrance, 
Wild Falls, or Majestic Rock. Of these, the branch from Majestic Rock to The Meadow has the 
smallest cost; so it too is added to the network. 

At this stage, the only unconnected site is Sunset Point. The cheapest branch linking Sunset Point 
to any other site is the one from Wild Falls. Adjoining this branch to the network, we arrive at Fig. 
15-6, having a minimal cost of 

z * = 7.1 + 8.3 + 5.2 + 16.2 = 36.8 mi 

Fig. 15-5 Fig. 15-6 

15.3 An individual who lives in Ridgewood, New Jersey, and works in Whippany, New Jersey, 
seeks a car route that will minimize the morning driving time. This person has recorded 
driving times (in minutes) along major highways between different intermediate cities; these 
data are shown in Table 15-2. A blank entry signifies that no major highway directly links 
the corresponding points. Determine the best commuting route for this individual. 

Table 15-2 

Ridgewood Clifton Orange Troy Hills Parsippany Whippany 

Ridgewood ... 18 . .. 32 . . . . .. 

Clifton 18 . . . 12 28 ... . .. 

Orange . . . 12 ... 17 . .. 32 

Troy Hills 32 28 17 ... 4 17 

Parsippany ... . . . . .. 4 . .. 11 

Whippany ... . .. 32 17 11 . .. 
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This situation may be modeled as a shortest-route problem. The nodes are the cities, the branches 
are the connecting highways, and the costs associated with the branches are the travel times. The 
source is Ridgewood, and the sink is Whippany. 

STEP 1 The master list is shown in Fig. 15-7(a), with each city represented by the first letter in its 
name. Branches CR and TR are absent under C and T, respectively; these appear, as RC 
and RT, under the source only. Similarly, no branches are listed with the sink as first node. 

STEP 2 We star the source node, R, and assign it the value 0. The cheapest branch leaving R is RC; 
so we star C and assign it the value 18, the cost of RC. We circle branch RC and then delete 
from Fig. 15-7(a) all other branches whose second node is C, i.e., OC and TC. The new 
master list is Fig. 15-7(b). 

R c 0 T p w 

RC 18 co 12 oc 12 TP 4 PT 4 

RT 32 CT 28 OT 17 TW 17 PW 11 

ow 32 TO 17 

TC 28 

(a) 

R* (0) C* (18) 0 T p w ---
~ co 12 OT 17 TP 4 PT 4 

RT 32 CT 28 ow 32 TW 17 PW 11 

TO 17 

(b) 

R* (0) C* (18) 0* (30) T p w 

~<§3) OT 17 TP 4 PT 4 

RT 32 CT 28 ow 32 TW 17 PW 11 

(c) 

R* (0) C* (18) 0* (30) T* (32) p w 

~ ~ 
ow 32 TP 4 PW 11 

3 TW 17 

(d) 

R* (0) C* (18) 0* (30) T* (32) P* (36) w 
---

~~ ow 32 ~ PW 11 

3 TW 17 

(e) 

R* (0) C* (18) 0* (30) T* (32) P* (36) W* (47) 

~~ ~ ~ 3 

(f) 

Fig. 15-7 
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STEP 4 The starred nodes are R and C. 1be sums of interest are 0 + 32 = 32 under R, obtained by 
adding the value of R to the cost of RT, and 18 + 12 = 30 under C, obtained by adding the value of 
C to the cost of CO. Since 30 is the smaller sum, we circle CO, star 0, assign 0 the value 30, and 
delete from Fig. 15-7(b) all other branches having 0 as second node, i.e., TO. The result is Fig. 
15-7(c). 

STEP 4 The starred nodes are R, C, and 0. The sums of interest are 0 + 32 = 32 under R, 18 + 28 = 
46 under C, and 30 + 17 = 47 under 0. The smallest sum is 32; hence we circle RT, star T, 
assign T the value 32, and delete from Fig. 15-7(c) all other branches with second node T. The 
result is Fig. 15-7(d). 

STEP 4 The only starred nodes having uncircled branches under them in the current master list, Fig. 
15-7(d), are 0 and T. For these nodes, the sums of interest are 30 + 32 = 62 and 32 + 4 = 
36, respectively. Therefore, we circle TP, star P, assign P the value 36, and delete all other 
branches with second node P, of which there are none. The new master list is Fig. 15-7(e). 

STEP 4 The only starred nodes having uncircled branches under them in the new master list are 0, T, 
and P. The sums of interest are, respectively, 30+32=62, 32+17=49, and 36+11= 
47. Since 47 is the smallest, we circle PW, star W (the sink), assign W the value 47, and 
delete from Fig. 15-7(e) all other branches having W as second node. The result is Fig. 
15-7(/). 

STEP 5 The minimum driving time from Ridgewood to Whippany is z* = 47 min. To identify the 
optimal path, we search Fig. 15-7(/) for a circled branch having W as second node; it is 
PW. Next we search for a circled branch having P as second node; it is TP. Then we search 
for a circled branch having T as second node; it is RT. Since R is the source, the desired 
path is {RT, TP, PW}. 

15.4 A manufacturing concern has been awarded a contract to produce casings. The contract is 
for 4 years and it is not expected to be renewed. The production process requires a 
specialized machine which the concern does not have. The concern can buy the machine, 
maintain it for the 4 years of the contract, and then sell it for scrap value; or it can replace the 
machine at the end of any given year by a new model. New models require less maintenance 
than older ones. Estimated net operating cost (purchase price plus maintenance minus 
trade-in) for buying a machine in the beginning of year i and trading it in at the beginning of 
year j is given in Table 15-3, with all figures expressed in thousand-dollar units. 

Table 15-3 

I~ 1 2 3 4 5 

1 ... 12 19 33 49 
2 ... . .. 14 23 38 
3 . . . ... . .. 16 26 
4 ... . .. . . . . .. 13 

Flg. 15-8 
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Determine a replacement policy that will minimize the total operating cost for the machine 
over the life of the contract. 

This problem can be solved by dynamic programming; alternatively, it can be modeled as a 
shortest-route problem on an oriented network. We let nodes Y~, ... , ¥4 represent the beginnings of the 
years of the contract, and Ys the beginning of the fifth year. An oriented branch from Y; to Yj signifies 
purchase of a machine at the beginning of year i and trade-in or scrapping of the machine at the beginning of 
year j. The cost associated with each branch is the net operating cost. The network is shown in Fig. 15-8. 

The master list fort his oriented network is given in Fig.15-9(a ). Applying the cheapest-path algorithm 
to it, we obtain successively Figs. 15-9(b) through 15-9(e). From Fig. 15-9(e). 

z * = 45 (thousand dollars) 

The optimal path is found as {Y, Y3, YJ Y5}. This path represents the policy of buying a machine at the 
beginning of year 1, trading it in for a new machine at the beginning of year 3, and finally scrapping the 
2-year-old machine at the beginning of year 5. 

Y, y2 y3 y4 Y5 

y,y2 12 y2y3 14 ¥3¥4 16 ¥4¥5 13 
y,y3 19 y2y4 23 ¥3¥5 26 

y,y4 23 ¥2¥5 38 

y,y5 49 
(a) 

YT (0) n (12) y3 y4 Y5 

~ y2y3 14 ¥3¥4 16 ¥4¥5 13 

y,y3 19 y2y4 23 ¥3¥5 26 

y,y4 33 ¥2¥5 38 

y,y5 49 
(b) 

YT (0) n (12) n (19) y4 Y5 

~ y2y4 23 ¥3¥4 16 ¥4¥5 13 

~ ¥2¥5 38 ¥3¥5 26 

y,y4 33 

¥ 1¥5 49 
(c) 

YT (0) y~ (12) n (19) n (33) Y5 

~ Yz¥5 38 ¥3¥5 26 ¥4¥5 13 

~ 
~ 

y,y5 49 
(d) 

YT (O) Y! (12) Y3 (19) Y4 (33) Y! (45) 

~ ~ 
~ 
~ (e) 

Fig. 15-9 
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15.5 In Fig. 15-10, identify a path from source A to sink G that can accommodate positive flow. 

(a) 

Fig. 15-10 

(c) 

Fig. 15-11 

(b) 
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We begin with the source and find all nodes that can be reached directly from A along branches 
allowing positive flow out of A. They are B, E, and F, as indicated in Fig. 15-ll(a). Next we consider 
these three new nodes successively. 

Focusing on B first, we identify all nodes not shown in Fig. 15-ll(a) that can be reached from B 
along branches allowing positive flow out of B. There are none such. Focusing on E, we see that A, 
B, and C can be reached along branches allowing positive flow out of E; but since A and B already 
appear in Fig. 15-ll(a), only C is added. From F, nodes A and D can be reached along branches 
allowing positive flow; but since A already appears in Fig. 15-ll(a), we add only node D. The result is 
Fig. 15-ll(b). 

We now consider nodes C and D successively. Focusing on C first, we determine that A, B, E, and 
D all can be reached directly from C along branches with positive flow out of C. Since each of these 
nodes already appears in Fig. 15-ll(b), we make no adjustments to it and consider next node D. From 
D, we can reach A and G along branches allowing positive flow. Since only G is new, we adjoin it to 
Fig. 15-ll(b ), obtaining Fig. 15-ll(c ). It follows from this last figure that {AF, FD, DG} is a path from 
source to sink that can accommodate a positive flow (of 1 unit). 

15.6 Determine the maximal flow of material that can be sent from source A to sink D through the 
network shown in Fig. 15-2. 

One path from source to sink is the branch AD linking these two nodes directly. It can accommo­
date 8 units. Shipping this amount, we deliver 8 units to D, decrease the capacity of AD by 8, and increase 
the capacity of DA by 8. The resulting network is shown in Fig. 15-12(a ). 

Another path from source to sink that can accommodate positive flow is {AC, CB, BD}. The 
maximum amount of material that can be sent along this path is 4 units, the capacity of BD. Making 
such a shipment, we increase the supply at D by 4 units to 8 + 4 = 12. Simultaneously, we decrease the 
capacities of AC, CB, and BD by 4 units and increase by this same amount the capacities of CA, BC, 
and DB. Figure 15-12(a) then becomes Fig. 15-12(b). 

Path {AC, CD} in Fig. 15-12(b) can accommodate 3 units from A to D. Making this shipment, we 
increase the supply at D by 3 units to 12 + 3 = 15, and decrease the capacities of AC and CD by 3. We 
also increase by 3 units the capacities of CA and DC. The new network is Fig. 15-12(c). 

Path {AB, BC, CD} in Fig. 15-12(c) can accommodate 7 units from ·source to sink. Making this 
shipment, we increase the supply at D to 15 + 7 = 22 units, and decrease the capacities of AB, BC, and 
CD by 7. We also increase by 7 units the capacities of BA, CB, and DC. The result is Fig. 15-12(d). 

(a) (c) 

(b) (d) 

Fig. 15-12 
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There is no path from source to sink in Fig. 15-12(d) that permits positive flow. Therefore, the 
maximum amount of material that can be sent from A to D is 22 units. To determine the optimal 
shipping schedule, we compare Fig. 15-12(d) with Fig. 15-2. We note the following reductions in 
capacity: 7 units from A to B, 8 units from A to D, 7 units from A to C, 4 units from B to D, 3 units 
from B to C, and 10 units from C to D. These reductions, considered as shipments, constitute the 
optimal shipping schedule. 

15.7 Explain the significance of increasing the reverse capacities, as stipulated in Step 3 of the 
maximal-flow algorithm. 

Increasing these capacities allows for flows in the reverse directions at a later stage in the algo­
rithm. Such potential flows are necessary to correct a previously designated flow which proves to be un­
optimal. 

An example is given by Problem 15.6. In the second iteration, it was determined that path 
{AC, CB, BD} could accommodate a direct flow of 4 units. Using this path, however, is not optimal; it 
was found that the optimal schedule ships 3 units from B to C and nothing from C to B. Nonetheless, 
shipping 4 units from C to B and then increasing the capacity from B to C by 4 units allowed one to 
correct this error later in the algorithm. Indeed, the last step in the iterative solution called for a 
shipment of 7 units along {AB, BC, CD}. But this shipment could not have been made had the capacity 
of BC not been increased from its original value of 5. Effectively, this 7-unit flow from B to C corrects 
the previous nonoptimal flow of 4 units from C to B, leaving a net flow of 3 units along BC in the 
direction of C. 

Supplementary Problems 

15.8 Solve the minimum-span problem for the network shown in Fig. 15-13. 

Fig. 15-13 

15.9 Solve the minimum-span problem for the network shown in Fig. 15-14. 
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Fig. 15-14 

15.10 Find the minimum-cost path connecting A and Lin the network of Fig. 15-14. 

15.11 Determine the maximum amount of material that can be shipped from H to A through the network 
shown in Fig. 15-13, assuming that the numbers on the branches represent the flow capacities in both 
directions. 

15.12 Determine the maximum amount of material that can be shipped from A to K through the network 
shown in Fig. 15-14, assuming that the numbers on the branches represent the flow capacities in both 
directions. 

15.13 Solve the maximal-flow problem for the network shown in Fig. 15-15 if A is the source and J is the sink. 

Fig. 15-15 
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15.14 Resolve Problem 15.11 if, in addition to H, node D is a source. 

15.15 A shipping company must move 50 units of a product from Los Angeles to New York. Table 15-4 gives 
transportation costs (in dollars per unit) between the company's various depots; blank entries in the table 
signify that shipments cannot be made directly between corresponding depots. Find the cheapest 
shipping schedule. Solve first as a shortest-route problem, then, as a check, solve as a transshipment 
problem. 

Table 15-4 

Los San St. New 
Angeles Francisco Phoenix Laramie Louis Chicago York 

Los Angeles ... 7 8 . .. 39 . .. 95 

San Francisco 7 ... 22 17 . .. 36 85 

Phoenix 8 22 ... 14 25 27 . .. 

Laramie ... 17 14 . .. 31 19 . .. 

St. Louis 39 ... 25 31 . .. 14 20 

Chicago ... 36 27 19 14 . .. 13 

New York 95 85 ... . .. 20 13 . .. 

15.16 A construction firm has collected data on dump trucks, as shown in Table 15-5 (dollar amounts). 

Table 15-5 

Age in Years 
--

0-·1 1-2 2-3 3-4 4-5 

Maintenance Cost 7000 7500 9700 7700 9000 

Lost Revenue for 
Down Time 500 800 1200 800 1000 

Year-End Trade-In 
Value 16000 6000 9000 3500 2500 

No dump truck is kept more than 5 years. Determine a replacement policy for a dump truck currently 2 
years old, that will minimize the total operating cost over the next 9 years. Assume that new trucks cost 
$21 000 and only new trucks are purchased as replacements. Solve first as a shortest-route problem, then 
check your solution with dynamic programming. (Hint: Take Yo as the beginning of the period. Then Y1 
through Y9 are the beginnings of the next 9 years, and Y_z represents the day the current truck was 
purchased. Y-1 is not needed.) 

15.17 A cut through a network having a source and a sink is any set of oriented branches that contains at least 
one branch from every path from source to sink. The cut value is the sum of the flow capacities in the 
specified directions of the branches comprising the cut. For the network of Fig. 15-16, which of the 
three indicated sets of branches are cuts, and what are the cut values? 
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(a) 

(b) 

(c) 

Fig. 15-16 

183 

Sink 

Sink 

15.18 The max-flow, min-cut theorem states that for any network with a single source and a single sink the 
maximum flow through the network equals the minimum cut value in the network. Using this theorem 
and the results of Problem 15.17, determine an upper bound on the flow through the network of Fig. 15-16. 

15.19 Find a cut through Fig. 15-10 that has value 1. Using the max-flow, min-cut theorem and the result of 
Problem 15.5, conclude that the maximum flow through the network is 1 unit. 



PART II: Probabilistic Methods 

Chapter 16 
Game Theory 

GAMES 

A game is a competitive situation among N persons or groups, called players, that is conducted 
under a prescribed set of rules with known payoffs. The rules define the elementary activities, or 
moves, of the game. Different players may be allowed different moves, but each player knows the 
moves available to the other players. 

If one player wins what another player loses, the game is called a zero-sum game. 
game is a game having only two players. Two-person, zero-sum games, also called 
will be the only type of games considered in thi& chapter. 

STRATEGIES 

A two-person 
matrix games, 

A pure strategy is a predetermined plan that prescribes for a player the sequence of moves and 
countermoves he will make during a complete game. In a matrix game, either player has a finite set of 
pure strategies, although their number may be enormous. Player I (II) knows player II's (I's) set, but he 
does not know for sure which element of the set II (I) has picked at the commencement of a given play of the 
game. Thus, a complete characterization of the game is provided by its payoff matrix, Table 16-1, which 
gives the amount g;i won by player I from player II when I plays his ith pure strategy, A;, and II plays his jth 
pure strategy, Bi. (The matrix of payoffs to player II is the negative of the above matrix.) 

Table 16-1 Table 16-2 

Player II Player II 

Bt B2 B. 1 2 3 

... 
At gil g!2 g!. t ... 
A2 .! .. g21 gn g2n 

41 Cl. .! ........................ 

1 2 -3 4 
2 -3 4 -5 
3 4 -5 6 

Cl. 
A,. g,.l g,.2 g,.. 

Example 16.1 Consider the game in which two players simultaneously reveal 1, 2, or 3 fingers each. If the 
sum of the revealed fingers is even, player II pays to player I the sum in dollars; if the sum is odd, player I pays to player II 
the sum in dollars. 

For this very simple two-person, zero-sum game, the pure strategies can be identified with the individual 
moves. (This could not be done for, say, ticktacktoe, in which a single pure strategy might run: "If he moves first 
to the center, I will move to the upper right-hand corner; if he then moves to the lower right-hand corner, I 
will .... ") Furthermore, both players have the same set of pure strategies, {1, 2, 3}. The payoff matrix is given in 
Table 16-2. 

The objective in game theory is to determine a "best" strategy for a given player under the 
assumption that the opponent is rational and will make intelligent countermoves. Consequently, if 
one player always chooses the same pure strategy or chooses pure strategies in a fixed order, his 
opponent will in time recognize the pattern and will move to defeat it, if possible. Generally, 
therefore, the most effective strategy is a mixed strategy, defined by a probability distribution over the 

184 
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set of pure strategies. For the game of Table 16-1, a mixed strategy for player I will be specified by 
a probability vector 

X= [xi. X2, .•• , Xm]T 

where x1 (i = 1, ... , m) is the proportion of time (i.e., the relative frequency or probability) that A, is 
chosen. Similarly, a mixed strategy for player II will be designated by 

Y = (yi, Yz, · · · , Yn]T 

where y1 (j = 1, ... , n) is the probability that B1 is chosen. As probabilities, the x1 and y1 are 
nonnegative, with 

m " 

~x, = ~y1 = 1 
i=l /=1 

Example 16.2 In the game of Example 16.1, if player I always shows 3 fingers, player II can defeat that pure 
strategy by always showing 2 fingers. If player I adopts the set sequence of pure strategies 3, 3, 2, 3, 3, 2, 3, 3, 2, ... , 
player II can defeat it with the sequence 2, 2, 3, 2, 2, 3, 2, 2, 3, .... 

If player I adopts the mixed strategy X= [1/6, 1/3, 1/2)T, then player I plans to show 1 finger one-sixth of 
the time, 2 fingers one-third of the time, and 3 fingers one-half of the time. To implement the strategy, player I 
could roll one die before each play. If the die showed a 1 (having probability 1/6), he would show 1 finger; if 
the die showed a 2 or 3 (having probability 2/6 = 1/3), he would show 2 fingers; if the die showed 4, 5, or 6 
(having probability 3/6 = 1/2), he would show 3 fingers. 

STABLE GAMES 

Suppose that the players of the game defined by Table 16-1 are restricted to using pure 
strategies. Write: 

m1 =maximum value of the minimum gain to player I 

= ~aximum (minimum {g11}) 
•=l, .... m J=l, ... ,n 

mn =minimum value of the maximum loss to player II 

=minimum (maximum {g1j}) 
j= 1, ... , n i= I, ... , m 

(16.1) 

(16.2) 

If player I plays the row that yields the maximum in (16.1)-the maximin strategy-he is assured of 
winning an amount m1 at worst; whereas, by playing another row, he could win less than 
m1• (Equivalently, under the maximin strategy, player I loses -m1 at worst.) Analogously, if player 
II plays the column that yields the minimum in (16.2)-the minimax strategy-his assured loss (which 
is I's gain) will be mn at worst. We shall say that these two strategies satisfy the minimax criterion. 

Now, by their definitions, 

(16.3) 

for any matrix game. If m1 = mn, then player I would only worsen his position by departing from 
the maximin strategy, and player II would only worsen his position by departing from the minimax 
strategy. Such a game is stable, and the strategies prescribed by the minimax criterion are optimal 
for the two players. Furthermore, both players can agree as to what a play of the game is worth (to 
player I); namely, 

G*=mr=mn 

The number G* is called the value of the game; it is the amount paid by player II to player I when 
both players have used their optimal strategies. 

In summary: Every stable game has a unique value, and an optimal (pure) strategy for either 
player. (Note that the optimal strategies need not be unique.) 
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UNSTABLE GAMES 

When the inequality holds in (16.3), the game is unstable, and the pure strategies dictated by the 
minimax criterion are no longer optimal. The fundamental result in the theory of matrix games is 
that, when mixed strategies are admitted, unstable games also have a solution-i.e., optimal 
strategies and a value-provided that the random payoff is replaced by its expected value. 

Under mixed strategies (defined by the probability vectors X for player I andY for player II, the payoff 
from II to I is a random variable having expected value 

m " 

E(X, Y) = ~ ~ gijXiYj 
i=l j=l 

Analogous to (16.1) and (16.2), write: 

Mr =maximum value of minimum expected gain to player I 

=max (min E(X, Y)) 
X y 

Mn =minimum value of maximum expected loss to player II 

=min (max E(X, Y)) 
y X 

(16.4) 

(16.5) 

(16.6) 

in which X andY run through all m -dimensional and all n-dimensional probability vectors, respectively. 
Then we have the 

Minimax theorem: For any game matrix, there exist optimal strategies X* and Y* such that 

E(X*, Y*) = Mr = Mu = G* 

In other words, any matrix game has a value. Observe that stable games are also covered by the 
minimax theorem, since a pure strategy is a special mixed strategy that has a single nonzero component 
(equal to 1). 

SOLUTION BY LINEAR PROGRAMMING 

The optimal strategies guaranteed by the minimax theorem, as well as the value of the game, can 
be calculated via linear programming. The optimal strategy for player II is incorporated in the solution of 
the following linear program: 

maximize: z = -yn+I 

subject to: KnYI + KI2Y2 + ... + KinYn - Yn+i s 0 

K21Y1 + K22Y2 + ' ' ' + KznYn - Yn+l S 0 

Km1Y1 + KmzYz +'' '+ KmnYn- Yn+l S 0 

Y1 + Yz + · · · + Yn = 1 

with: y 1, y 2, •.. , Yn nonnegative 

(16.7) 

Here G* = y:+I and Y* = [yT, y!, ... , y:JT. By initially increasing each gij by the same positive 
amount (this leaves unchanged the nature of the game), we can force gij ~ 0. Then the expected 
gain to player I is also nonnegative. Since this quantity is represented by Yn+I in program (16. 7), 
it follows that all variables can be restricted to nonnegative values under such circumstances. 
Equivalently, Yn+I can be replaced by the difference of two, new, nonnegative variables. The 
optimal strategy for player I is the probability vector whose components are the solution to the dual 
of program (16. 7). (See Problem 16.9.) 

Whenever a player has only two pure strategies, the optimal strategy for that player can be 
determined graphically. (See Problem 16.10.) If both players have exactly two pure strategies, 
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then the optimal strategies are 

with 

(See Problem 16.7.) 

DOMINANCE 

X
*- gu-gt2 z-

gu + gzz- gtz- gzt 

* g22- g12 
Yt= Y

* _ gu- gzt 
gu + gzz- gt2- gzt 

z- gu + gzz- gt2- gzt 

G* = gugzz- gtzgzt 
gu + g22- gtz- gzt 
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(16.8) 

(16.9) 

(16.10) 

A pure strategy P is dominated by a pure strategy Q if, for each pure strategy of the opponent's, 
the payoff associated with P is no better than the payoff associated with Q. Since a dominated pure 
strategy can never be part of an optimal strategy, the corresponding row or column of the game 
matrix may be deleted a priori. 

Solved Problems 

ltd Construct a payoff matrix for the following game. Each of two supermarket chains proposes to 
build a store in a rural region that is served by three towns. The distances between towns are 
shown in Fig. 16-1. Approximately 45 percent of the region's population live near town A, 35 
percent live near town B, and 20 percent live near town C. Because chain I is larger and has 
developed a better reputation than chain II, chain I will control a majority of the business 
whenever their situations are comparable. Both chains are aware of the other's interest in 
the region and both have completed marketing surveys that give identical projections. If 
both chains locate in the same town or equidistant from a town, chain I will control 65 percent 
of the business in that town. If chain I is closer to a town than chain II, chain I will control 90 
percent of that town's business. If chain I is farther from a town than chain II, it will still 
draw 40 percent of that town's business. The remaining business under all circumstances will 
go to chain II. Furthermore, both chains know tlrat it is the policy of chain I not to locate in 
towns that are too small, and town C falls into this category. 

Fig. 16-1 
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There are two players of this game, chain I and chain II. Player I has two pure strategies: A1 
(locate in town A) and A2 (locate in town B); Player II has three pure strategies: B1 (locate in town A), 
B 2 (locate in town B), and B 3 (locate in town C). We take the payoffs to chain I to be the percentages 
of business in the region that will fall to chain I, according to the marketing surveys. Since each 
percentage point increase or decrease represents an identical decrease or increase, respectively, for chain 
II, this is a two-person, zero-sum game. 

If both chains locate in the same town, then player I will receive 65 percent of the business from the 
entire region. Thus, g11 = g22 = 65. If chain I locates in town A while chain II locates in town B, then 
player I is closer to town A than player II, but player II is closer to both towns B and C than player 
I. Consequently, player I will capture 

(0.90)(0.45) + (0.40)(0.35) + (0.40)(0.20) = 0.625 

or 62.5 percent of the region's business. Therefore, g12 = 62.5. If chain I locates in town B and chain 
II locates in town C, then player I is closer to towns A and B, while player II is closer to town C. 
Consequently, player I will have 

(0.90)(0.45) + (0.90)(0.35) + (0.40)(0.20) = 0.80 

or 80 percent of the region's business. Therefore, g23 = 80. Similarly, g13 = 80 and g21 = 67.5. 
These results are collected in Table 16-3, which is the payoff matrix for this game. 

Table 16-3 

Player II 

B1 B2 B3 
... 
t AI 65 62.5 80 

i A2 67.5 65 80 

16.2 Construct a payoff matrix for the following game. A barrel contains equal numbers of red and 
green marbles. Player I randomly selects one marble and inspects it for color without 
showing it to player II. If the marble is red, player I says, "I have a red marble," and 
demands $1 from player II. If the marble is green, either player I says, "The marble is 
green," and pays player II $1, or player I bluffs by saying, "The marble is red," and demands 
$1 from player II. Whenever player I demands $1, player II either can pay or can challenge 
player I's claim that the selected marble is red. Once challenged, player I must show the 
marble to player II. If it is indeed red, player II pays player I $2; if it is not red, player I pays 
player II $2. 

Player I has only two pure strategies; namely, 

A1: To claim the marble's actual color. 

A2: To claim the marble red whether or not it is red. 

[Note that I's pure strategies are not identical with his moves, which are (i) to claim red and (ii) to claim 
green.) Player II also has just two pure strategies; these are 

B1: To believe player I. 

B2: To believe if the claim is green and to challenge if the claim is red. 

Since each person wins what the other loses, this is a two-person, zero-sum game. 
In this game, the payoffs associated with the pure strategies are random variables; we replace them 

by their expected values. Thus, g11 is the expected gain to player I if player I claims the true color of 
the chosen marble and player II believes. Since half the time the marble is red and half the time it is 
green, 

gil= !(1)+!(-1) = 0 

The payoff g12 is the expected gain to player I when player I claims the true color of the marble and 
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player II challenges if red is claimed. Since the marble has probability 1/2 of being either color, half the 
time there will be no challenge, and half the time player II will challenge and lose. Therefore, 

g12 = !(-1)+!(2) =! 

Similarly, 

K22 = !(-2) + !(2) = 0 

These results are collected in Table 16-4, which is the payoff matrix for the game. 

Table 16-4 

Player n 

Bt B2 
... 
t 
i 

At 0 1/2 
A2 1 0 

16.3 Determine whether any pure strategies in the game of Table 16-3 can be discarded through 
dominance. 

Player I can discard At (locating in town A), since the payoffs from this strategy are always less than 
or equal to the corresponding payoffs from A2. Player II can discard both Bt and B 3 as inferior to B2 
(note that the payoffs to player II are the negatives of those given in Table 16-3 for player I). With the 
first row and the first and third columns deleted, the payoff matrix consists of a single entry. Thus A 2 

and B2 are optimal strategies. Both supermarket chains should locate in town B. Chain I will control 
65 percent of the region's business, with the remaining 35 percent going to chain II. 

16.4 Let G' denote the game matrix obtained from matrix G by eliminating dominated rows and 
columns. Show that G is stable if and only if G' is stable. 

It suffices to consider the case in which the first row of G is dominated by the second row. If gtp 

and g2q are the two row minima (indicated by circles below), 

[:::.:~ .. :::.~.:: :~ ...... ::] 
then Ktp s Kt9 • Also, Kt9 s g2q (by dominance). Hence, 

Ktp sg2q 

This means that the maximum of the row minima in G is the same as the maximum of the row minima in 
G', i.e., mr = m}. 

Further, if row 1 contains a column maximum of G-say, gb-it follows from dominance that g2. = 

Kt. is also a column maximum. Consequently, the minimum of the column maxima in G is the same as 
the minimum of the column maxima in G', i.e., mil= m}r. We conclude that 

mr =mil if and only if m}=mh 

16.5 Is the game of Table 16-3 stable? 

Yes, by Problems 16.3 and 16.4. 

16.6 Is the game of Table 16-4 stable? 

Here, mr = 0 < 1/2 = mil; the game is unstable. 
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16.7 Find the optimal strategies for both players of the game of Table 16·4. 

As determined in Problem 16.6, the game is unstable and hence not solvable in pure strategies. 
Since this game involves exactly two pure strategies for each player, the optimal (mixed) strategies are 
given by (16.8) and (16.9) as 

0-1 2 
xt == """0--:-+-;;0---(,..,.1./2)-1 3 

*- 0- (1/2) 
y I - 0 + 0- (1/2)- 1 3 

1 
x!==1-xT==-

3 

2 
y!==1-yt==3 

Accordingly, player II should believe player I one-third of the time, while challenging player I the other 
two-thirds of the time if player I claims a red marble. Player I should claim the true color of the marble 
two-thirds of the time, while bluffing the other third of the time if the marble is green. The net result 
will be, by (16.10), an expected gain of 

G * == (0)(0)- (1/2)(1) ==! d II 
0 + 0- (1/2)- 1 3 ° ar 

to player I each time the game is played. 'Ibe expected payoff to player II is the negative of this amount. 

16.8 Find optimal strategies for both players of the game defined by the payoffs given in Table 
16-5. 

... .. .. 
i 

AI 
A2 
AJ 
A4 

B1 

3 
-4 

2 
0 

Table 16-5 

Player II 

B2 B1 B4 

-2 -4 0 
2 -1 7 

-5 -4 1 
-3 -2 -1 

Table 16-6 

Player II 

Bs B1 B2 BJ Bs 

6 
-8 
-1 

... 
t 

i 
AI 3 -2 -4 6 
A2 -4 2 -1 -8 
A4 0 -3 -2 -1 

-1 

Pure strategy B 4 is dominated by B 3 (and by B2), so it can be eliminated. Once it is, then A1 is 
dominated by A 1 ; hence A 3 also can be discarded. The resulting payoff matrix is Table 16-6, for which 

mt '= -3 < -1 = mu 

As the game is not stable, the optimal strategies for both players are mixed strategies incorporated 
in the solution of program (16. 7). For the payoffs in Table 16-6, this program becomes 

maximize: z == -y6 

subject to: 3yl - 2y2- 4yJ + 6ys- Y6 :S 0 

-4yl + 2y2- Y1- 8ys- Y6 :S 0 

- 3y2- 2yJ - ys- Y6 :S 0 
(1) 

Y1 + Y2 + Y1 + ys = 1 

with: y1, Y2, y1, and Ys nonnegative 

Since Y6 is unrestricted, we set Y6 == Y1- ys, where both Y1 and ys are nonnegative variables (see Chapter 
2). The initial simplex tableau is Tableau 1, with slack variables yo, yw, and y11, and artificial variable 
y12. Five iterations of the simplex algorithm yield Tableau 6. It follows that the optimal strategy for 
player II (with y: == 0 because B4 is not used) is 

Y* == [yt, y!, yt yt. Y~V = [0, 7/60, 7/10,0, ll/60V 

The optimal strategy for player I (with x ~ == 0 because A 3 is not used) is given in terms of the dual 
solution (see Chapter 5) as 
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X*= [xf, xt x~, d)T = [1/15, 1/5, 0, ll/l5)r 

The value of the game is 

G* = y ~ = y ~ _ y: = 0 _ 29 = _ 29 
15 15 

that is, player I can expect to lose 29/15 units to player II at each play, provided both players use their 
optimal strategies. 

Yt Y2 YJ Ys Y1 Ys Y9 Yw Yu Y12 
0 0 0 0 -1 1 0 0 0 -M 

Y9 0 3 -2 -4 6 -1 1 1 0 0 0 0 
Yto 0 -4 2 -1 -8 -1 1 0 1 0 0 0 
Yu 0 0 -3 -2 -1 -1 1 0 0 1 0 0 
Yt2 -M 1 1 1 1 0 0 0 0 0 1 1 

(Zj- CJ): 0 0 0 0 1 -1 0 0 0 0 0 
-1 -1 -1 -1 0 0 0 0 0 0 -1 

Tableau 1 

Yt Y2 YJ Ys Y1 Ys Y9 Yw Yu 

Ys 7/12 0 0 1 0 0 1!15 -1!20 -1/60 11/60 
Y2 -1!12 1 0 0 0 0 4/15 3/20 -17/20 7/60 
Ys 4/3 0 0 0 -1 1 1!15 1/5 11!15 29/15 
YJ 1/2 0 1 0 0 0 -1/5 -1!10 3/10 7/10 

4/3 0 0 0 0 0 1!15 1/5 11!15 29/15 

Tableau 6 

16.9 (a) Derive a linear program for the optimal strategy for player I in the matrix game defined by 
Table 16-1. (b) Show that this program is the symmetric dual of (16. 7), the program for 
player II's optimal strategy. 

(a) Let X* denote the maximizing X in (16.5). Then (16.5) is equivalent to the following two condi­
tions: 

(i) E(X*, Y) ~ Mr for all probability vectors Y. 

(ii) If Xm+t > M 1, there is no probability vector X that satisfies 

E(X, Y)~Xm+t 
for all probability vectors Y. 

Condition (i) says that player I is guaranteed an expected return of at least Mr if he plays X*; 
condition (ii) says that no other strategy gives player I a larger minimum expected return. From 
(i) and (ii), it follows that the program 

maximize: z = Xm+t 

subject to: E(X, Y)~Xm+t (Y arbitrary) 

in the variables Xt, . .. , Xm, Xm+t has the solution [xt, ... , x!, Mr V. However, 

if and only if 

E(X, Y)"" ± (:i: KtJXI)Yi ~ Xm+1 
1•1 1=1 

LKiiXt~Xm+i 
1=1 

(j=1,2, ... ,n) 

(1) 

(2) 

(3) 

Indeed, relation (2) is just the convex combination (Chapter 3), with weights Yi> of relations 
(3). Consequently, program (1) may be rewritten as 
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minimize: z = -xm+l 

subject to: K11X1 + K21X2 + · · · + Km1Xm- Xm+l 2:0 

K12X1 + K22X2 +' • • + Km2Xm- Xm+l 2:0 

X1 + X2+' '' + = 1 

with: X1, X2, ... , Xm nonnegative 

[PART II 

(4) 

where we have changed the maximization to a minimization and have included the restrictions on 
the probabilities x,. 

(b) In program (4) above, replace Xm+l by Xm+l- Xm+2, where the new Xm+l and Xm+2 are nonnegative 
variables. Also, replace the equality constraint by 

-xl -x2- · · · -xm 2:-1 

X1 t X2 + ' ' ' + Xm 2: 1 

Make the analogous replacements in p~ogram (16. 7). Then program (4) falls into form (5.1) and 
program (16. 7) falls into form (5.2), wherein 

X= [Xt, x2, ... 'Xm+l·· Xm+21T W""" [yh Y2, · · · 'Yn+l, Yn+2)T 

gu K21 Kml -1 +1 0 0 
g\2 K22 Km2 -1 +1 0 0 
....................... ·~ .. 

A"" 
Kin K2n Kmn -1 +1 8"" 0 c"" 0 
-1 -1 -1 0 0 -1 -1 
+1 +1 +1 0 0 +1 +1 

16.10 Use a graphical method to determine an optimal strategy for player I in the game defined by 
Table 16-7. 

Table 16-7 

Player II 

B, B2 BJ 

At 2 -3 -4 
A2 -6 -1 1 

For this game, program (4) of Problem 16.9(a) becomes 

minimize: z = -xJ 

subject to: 2x1- 6x2- x 3 2: 0 

-3xi- x2-x32:0 (1) 

-4xi + x2- X3 2: 0 

X1 + X2 = 1 

with: XI and X2 nonnegative 

Before this program can be solved graphically, it must be reduced to a system involving just two vari­
ables. 

The equality constraint can be rewritten as 

(2) 

Then the nonnegativity of x2 is guaranteed by requiring 

XI :S 1 (3) 
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Substituting (2) into the constraints of system (1), replacing the nonnegativity condition on x2 by the new 
constraint (3), and going over to a maximization program, we obtain: 

maximize: z = X3 

subject to: 8x1- x 3 ~ 6 

-2xt- X3~ 1 

5Xt + X3S 1 

Xt s1 

with: Xt~O 

The graphical solution to program (4) is shown in Fig. 16-2. 

xf = 1/2 

The value of the game is z * = x t = -2. 

x~ = 1- xf = 1/2 

Fig. 16-2 

(4) 

z=l 

z = -2 

z = -4 
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Supplementary Problems 

16.11 Determine whether each matrix game, as defined below by the payoffs to the row player, is stable. 
Then find both optimal strategies and the value of the game. 

Bt B2 BJ 
Bt B2 BJ B4 

At 1 0 -6 
At 1 -1 -2 -1 A2 -1 -1 2 
A2 0 -2 8 6 AJ -2 0 0 

(a) (d) 

Bt B2 BJ 
Bt B2 BJ B4 

At 2 6 1 

At 1 -1 1 0 A2 8 4 6 
A2 -1 1 0 1 AJ 1 2 1 

(b) (e) 

Bt B2 
Bt B2 BJ B4 

At -1 -2 
At -2 -1 -2 8 A2 0 2 
A2 1 0 -1 -1 AJ -1 -5 
AJ -3 1 -3 1 A4 -2 1 

(c) (/) 

16.12 Solve Problem 16.1 if chain I controls 70 percent of a town's business whenever both chains locate in the 
same town or are equidistant from a town. 

16.13 Solve Problem 16.1 if the region is served by four towns situated along a straight highway as shown in 
Fig. 16-3. Approximately 15 percent of the population live near town A, 30 percent near town B, 20 
percent near town C, and 35 percent near town D; each town is large enough for both chains to consider 
locating in it. 

5 miles 3 miles 7 miles 

Fig. 16-3 

16.14 Devise a method for implementing strategy X* of Problem 16.8. 

16.15 Army A wishes to truck supplies to a border outpost which is expecting an attack by army B within 
hours. The nearest supply depot is connected to the outpost by two separate roads, one running 
through forests and the other over flatlands. A supply convoy moves faster over the flatlands route but 
enjoys better camouflage on the forest route. The convoy must take one route or the other. 

Army B anticipates a supply effort along one of the routes, and plans to hinder it with air 
strikes. It has available a single squadron of airplanes, which cannot be divided. If army B sends its 
airplanes above the forest route and finds army A there, army B will have time for four strikes against 
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the convoy. If army B sends its planes above the flatlands route and army A is using that route, army B 
will have time for three strikes. If army B sends its planes over the wrong route, valuable time is 
lost. Once it realizes its error and locates the convoy on the other route, army B will have time for two 
strikes on the flatlands route, but time for only one strike on the forest route (because of the added 
difficulty in finding the convoy through the trees). Determine the optimal strategies of the two armies. 

16.16 A Blue Army and a Red Army are contesting two airfields, valued at 20 and 8 million dollars, which are 
both under the control of the Red Army. The Blue Army is charged with attacking either or both 
airfields and inflicting maximum damage (measured in dollars) to the facilities. It is the task of the Red 
Army to minimize this damage. To achieve their respective objectives, each army can assign its full 
force to one of the two airfields or it can divide its force in half and cover both airfields with reduced 
capacity. 

A facility will experience 25 percent damage if it is attacked and defended at full force, but only 10 
percent damage if it is attacked and defended at half force. If a facility is attacked at full force but 
defended at half force, it will experience 50 percent damage. Any facility attacked either at half force 
or full force but not defended will experience complete destruction. A facility that is not attacked, or 
one that is attacked at half force but defended at full force, will experience no damage. Determine 
optimal strategies for both armies. 

16.17 Two ranchers have brought a dispute over a 6-yard-wide strip of land that separates their properties to a 
referee. Both claim the strip as entirely their own. Both ranchers are aware that the referee will ask 
each party to submit a confidential proposal for settling the dispute fairly and will then accept that 
proposal which gives the most. If both proposals give equally or not at all, the referee will split the 
difference, setting the boundary in the middle of the 6-yard width. Determine the ranchers' best 
proposals, if proposals are restricted to integral amounts. 

16.18 Cigarette bootleggers use two routes for moving cigarettes out of North Carolina, Interstate 95 or back 
roads. Both routes are known to the police, but because of personnel limitations they can patrol only 
one of these routes sufficiently at any one time-a fact well known to the bootleggers. 

Police estimate that the average load of contraband traveling on Interstate 95 is worth $1000 to the 
bootlegger if it reaches New York. The back roads limit the size of vehicles somewhat, so the average 
load of contraband traveling this route is worth only $800 if it reaches its destination. Any contraband 
discovered by the police is confiscated and the bootlegger is fined. For cigarettes traveling I-95, the loss 
to the bootlegger averages $700; the loss on cargo traveling the back roads averages $600. Further­
more, the police estimate that they intercept only 40 percent of the contraband traffic traveling I-95 when 
they are patrolling the highway, and 25 percent of the traffic traveling the back roads when they patrol 
there. Determine an optimal patrol strategy for the police if its objective is to minimize the boot­
leggers' gains. 

16.19 With one day left before elections, both candidates for Governor have targeted the same three cities as 
crucial and potentially worth a last visit. Since no visit is useful unless sufficient advance work has been 
completed by the candidate's staff, plans must be made by each candidate prior to knowing the 
opposition's choice. Polls commissioned by both sides show identical projections. Table 16-8 gives the 
estimated gain (in thousands of votes) for candidate I resulting from each combination of last-day visits. Which 
city should each candidate choose to visit? 

Table 16-8 

Candidate n 

To City 1 To City 2 To City 3 

To City 1 12 -9 14 
To City 2 -8 7 12 
To City 3 11 -10 10 
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16.20 A game is fair if G * = 0. A game is symmetric if both players have the same number of pure strategies 
and if, for all i and j, the gain to player I from his ith pure strategy and II's jth pure strategy is equal to 
the gain to player II from his ith pure strategy and I's jth pure strategy. Prove that any symmetric 
game is fair. 

16.21 In a well-known gambling game, player I holds a red ace and a black deuce, while player II holds a red 
deuce and a black three. Simultaneously, both players show one card of their choice. If the two cards 
match in color, player I wins; otherwise player II wins. The payoffs are determined by the following 
formula: If player I shows the ace, the players exchange the difference (in dollars) of the amounts 
shown on the two cards (ace counts as one); if player I shows the deuce, the players exchange the sum (in 
dollars) of the amounts shown on the two cards Player I, noting that he can win either $1 or $5 or lose 
either $2 or $4, reasons that the game is fair. ls it? 



Chapter 17 
Decision Theory 

DECISION PROCESSES 

A decision process is a process requiring either a single or sequential set of decisions for its 
completion. Each allowable decision has a gain or loss associated with it which is codetermined by 
external circumstances surrounding the process, a feature which distinguishes these processes from 
the processes treated in Chapter 14. The set of possible circumstances, known as the states of 

nature, and a probability distribution governing the occurrence of each state are presumed 

known. Both the set of allowable decisions and the set of states of nature will be assumed finite (an 
assumption not made in the more elaborate theory). 

We denote the allowable decisions by Dt. D 2, ..• , Dm; the states of nature by S., S2, ..• , Sn; and 
the return associated with decision D; and state Si by g;i (i = 1, 2, ... , m; j = 1, 2, ... , n). A 
process requiring the implementation of just one decision is defined completely by Table 17-1. This 

payoff table is known as a gain matrix whenever the entries g;i are in terms of gains to the decision 
maker. Losses are then represented as negative gains. 

Table 17-1 Table 17-2 

States of Nature States of Nature 

St s2 s. St s2 

"' 
"' Dt Kn Kt2 Ktn g 

i D2 K21 K22 K2n ! 
............... ~ 

Dm Kml Km2 ... Kmn 

Dt 60 660 
D2 -100 2000 

Example 17.1 A major energy company offers a landowner $60 000 for the exploration rights to natural gas on 
a certain site and the option for future development. The option, if exercised, is worth an additional $600 000 
to the landowner, but this will occur only if natural gas is discovered during the exploration phase. The 
landowner, believing that the energy company's interest is a good indication that gas is present, is tempted to 
develop the field herself. To do so, she must contract with local outfits with expertise in exploration and 
development. The initial cost is $100 000, which is lost if no gas is found. If gas is discovered, however, the 
landowner estimates a net profit of 2 million dollars. 

The decisions for the landowner are Dt (to accept the energy company's offer) and Dz (to explore and 
develop on her own). The states of nature are St (there is no gas on the land) and S2 (there is gas on the 
land). The gains (in thousands of dollars) to the landowner for each combination of events are given in Table 
17-2. 

It remains to specify or estimate the probabilities attached to the two states of nature, P(St) and P(Sz). 

Although Table 17-1 is identical in form to Table 16-1, there are significant differences between 

decision processes and matrix games. In a decision process, only the decision maker is capable of 
making rational decisions; nature is not. The actual state of nature in existence at any given time is 
a random event, but the underlying probability distribution cannot be considered a "mixed strategy," 

designed to inflict losses on the decision maker. Furthermore, we generally rule out any random­
ness in the decision maker's choice; he or she is restricted to one or another "pure strategy" D~, ... , Dm. 

Because of these differences, optimal game strategies tend, for decision processes, to be too con­

servative. 
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NAIVE DECISION CRITERIA 

The minimax (or pessimistic) criterion is to select the decision that minimizes the maximum 
possible loss to the decision maker. In terms of a gain matrix, it is the decision that maximizes the 
minimum possible gain. The optimistic criterion is to choose the decision that maximizes the possible 
gain. The middle-of-the road criterion is to select that decision for which the average of the maximum 
and minimum gains is greatest. (See Problems 17.1 and 17.2.) As none of these three criteria is 
based on the probable state of nature, they are considered inferior to other criteria that are so based. 
Two probabilistic criteria will now be given. 

A PRIORI CRITERION 

The a priori (or Bayes') criterion is to select the decision that maximizes the expected gain. (See 
Problems 17.3 and 17.4.) 

A POSTERIORI CRITERION 

If an imperfect experiment can be conducted that provides information on the true state of 
nature, then data from this experiment may be combined with the initial probabilities of the various 
states to yield an updated probability distribution. Designate the outcome of the experiment by 8 
and assume that the reliability of the experiment is given by the conditional probabilities P(8 I S1), 

P(8 I S2), ••• , P(8 I Sn). The updated (or a posteriori) probabilities of the states-P(St I 8), 
P(S2 1 8), ... , P(Sn I 8)-are determined from Bayes' theorem (Problem 17.5). The a posteriori 
criterion is to select the decision that maximizes the expected gain with respect to the updated 
probability distribution. (See Problems 17.6 and 17.7.) 

DECISION TREES 

A decision tree is an oriented tree (see Chapter 15) that represents a decision process. The 
nodes designate points in time where (i) one or another decision must be made by the decision 
maker, or (ii) the decision maker is faced with one or another state of nature, or (iii) the process 
terminates. Directed out of a node (i) is a branch for each possible decision; directed out of a node 
(ii) is a branch for each possible state of nature. Under each branch the probability of the corres­
ponding event is written, when defined. (See Problems 17.3 and 17.6.) 

Decision trees are useful in determining optimal decisions for complicated processes. The 
technique is to begin with the terminal nodes and sequentially to move backwards through the 
network, calculating the expected gains at the intermediate nodes. Each gain is written above its 
corresponding node. A recommended decision is one that leads to a maximum expected gain. 
Decisions that turn out to be nonrecommended have their corresponding branches crossed out. 
(See Problems 17.8 and 17.9.) 

UTILITY 

The utility of a payoff is its numerical value to a decision maker. Since no decision criterion is 
applicable unless all payoffs are quantified in identical units, the first step in analyzing any decision 
process is to determine the utility of all nonnumeric payoffs. (See Problem 17.12.) 

A common utility is monetary worth, whereby each payoff (e.g., a new house) is replaced in the 
gain matrix by its dollar value. Monetary worth, however, is not always appropriate. A payoff of 2 
million dollars is twice that of 1 million dollars, yet the former may not be worth twice the latter to a 
decision maker. The first million may be more valuable than the second million. In cases where 
dollars do not reflect the true worth of one payoff relative to another payoff, or where dollars are not 
a convenient quantification unit, other utilities must be used. 
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LOTTERIES 

A lottery ..<t'(A, B; p) is a random event having two outcomes, A and B, occurring with probabilities 
p and 1-p, respectively. 

VON NEUMANN UTILITIES 

The following four-step procedure is used to determine von Neumann utilities for a finite number 
of payoffs. 

STEP 1 List the payoffs in decreasing order of desirability: e1, e2, ••• , ep. Here, e; is at least as 
desirable as ei if i < j. 

STEP 2 Arbitrarily assign finite numerical values u(e1) and u(ep) to payoffs e1 and ep, respectively, 
such that u(e1) > u(ep). 

STEP 3 For each payoff ei ranked between e1 and eP in desirability, determine an equivalence 
probability Pi having the property that the decision maker is indifferent between obtaining 
ei with certainty and participating in the lottery ..<l'(e., eP; Pi). 

STEP 4 Let u(ei) = piu(e.) + (1- Pi) u(ep) be the utility of payoff ei. 

Step 3 is highly subjective. The value of Pi for each payoff ei (j = 2, 3, ... , p- 1) is an individual 
determination that may change drastically from one person to another or even for the same person at two 
different times. The resulting utilities, therefore, quantifr the relative worths of payoffs to a particular 
decision maker at a particular moment. However, for a ational individual, it may always be expected 
that the order of the p's, and therefore of the u's, will beth same as the order of thee's. (See Problems 
17.10 and 17.12.) 1 

A utility is normalized if u(e1) = 1 and u(ep) = 0, Jaking the utilities identical to the equivalence 
probabilities. 

Solved Problems 

17.1 Determine recommended decisions under each naive criterion for the process described in 
Example 17.1. 

The gain matrix for this process is Table 17-2. The minimum gain for decision Dt is 60, while that 
for D2 is -100. Since max {60, -100} = 60 is the gain associated with D~, Dt is the recommended 
decision under the minimax criterion. 

The largest entry in the matrix is 2000, the gain associated with D2. Therefore D2 is the recom­
mended decision under the optimistic criterion. 

The averages of the maximum and minimum gains for Dt and D2 are, respectively, 

660+ 60 = 360 
2 

and 2000 + ( -100) 950 
2 

Since max {360, 950} = 950 is associated with D2, D2 is the recommended decision under the middle-of­
the-road criterion. 

17.2 Determine recommended decisions under each naive criterion for the following decision 
process. A dress buyer for a large department store must place orders with a dress manufac­
turer 9 months before the dresses are needed. One decision is as to the number of knee-length 
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dresses to stock. The ultimate gain to the department store depends both on this decision and 
on the fashion prevailing 9 months later. The buyer's estimates of the gains (in thousands of 
dollars) are given in Table 17-3. 

Table 17-3 

S1: Knee lengths S2: Knee lengths S3: Knee lengths 
are high are are not 
fashion acceptable acceptable 

Dt: Order none -50 0 80 
D2: Order a little -10 30 35 
D3: Order moderately 60 45 -30 
D4: Order a lot 80 40 -45 

The minimum gains for decisions Dt through D4 are, respectively, -50, -10, -30, and -45. Since 
the maximum of these four amounts is -10, a gain associated with D2, D2 is the recommended decision 
under the minimax criterion. 

The maximum gain is 80, associated with both Dt and D4. Hence, either Dt or D4 is the recom­
mended decision under the optimistic criterion. 

The averages of the maximum and minimum gains for Dt through D4, respectively, are 15, 12.5, 15, 
and 17.5. Since the maximum of these averages is associated with D4, D4 is the recommended decision 
under the middle-of-the-road criterion. 

17.3 Determine the recommended decision under the a priori criterion for the process of Example 
17.1, if the landowner estimates the probability of finding gas as 0.6. 

With P(S2) = 0.6, it follows that P(St) = 1 ·- 0.6 = 0.4. Using the data in Table 17-2, we calculate 
the expected gain from Dt as 

E(Gt) = (60)(0.4) + (660)(0.6) = 420 

and the expected gain from D2 as 

E( G2) = (-100)(0.4) + (2000)(0.6) = 1160 

Since the maximum of these two amounts, 1160, is associated with D2, D2 is the recommended decision 
under the a priori criterion. 

This decision process is represented by the decision tree in Fig. 17-1. The expected gain of the 
process, 1160 at node B, is carried back from node D. 

60 

420 

660 

0 
-100 

Fig. 17-1 
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17.4 Determine the recommended decision under the a priori criterion for the decision process 

described in Problem 17.2, if the buyer estimates P(S1) = 0.25, P(S2) = 0.40, and P(S3) = 
0.35. 

Using the data from Table 17-3, we calculate the expected gains for decisions Dt through D4, 
respectively, as 

E(Gt)= (-50)(0.25)+ (0)(0.40)+ (80)(0.35)= 15.5 

E(G2) = (-10)(0.25) + (30)(0.40) + (35)(0.35) = 21.75 

E(G3) = (60)(0.25) + (45)(0.40) + (-30)(0.35) = 22.5 

E(G4) = (80)(0.25) + (40)(0.40) + (-45)(0.35) = 20.25 

Since the maximum of these expected gains, 22.5, is associated with D 3, DJ is the recommended decision 
under the a priori criterion. 

This process is represented by the decision tree in Fig. 17-2. 

F1g. 17-2 

17.5 State and prove Bayes' theorem. 

Consider a sample space Y consisting of all possible outcomes of a conceptual experiment (e.g., 
predicting the state of nature at a particular time). H A and B are two events (subsets) of Y, then the 
conditional probability of A given that B has occurred and the conditional probability of B given that A 
has occurred are defined by 

P(A n B)= P(B) P(A I B)= P(A) P(B I A) (1) 

where A n B is the intersection of A and B. Solving (1), we obtain 
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P(B I A)= P(A I B)P(B) 
P(A) 

in which it is assumed that P(A) > 0. Equation (2) is the simple form of Bayes' theorem. 

[PART II 

(2) 

The more usual form is obtained by introducing a set of mutually exclusive events, {H~, H2, ... , H.}, 
whose union is Y. Then 

P(A)=P(A nH.)+P(A nH2)+·· ·+P(A nHs) 

= P(A I Ht) P(Ht) +PIA I H2) P(H2) + ... + P(A I H.) P(Hs) 

Substituting (3) into (2) and choosing B = H;, we have 

P(H; I A)= .P(A I H;) P(H;) 

l: P(A I H;) P(H;) 
j=l 

(3) 

(4) 

Loosely speaking, Bayes' theorem, (4), evaluates the probability of the "cause" H; given the 
"effect" A. 

17.6 The landowner in Example 17.1 has soundings taken on the site where natural gas is sus­
pected, at a cost of $30 000. The soundings indicate that gas is not present, but the test is 
not a perfect one. The company conducting the soundings concedes that 30 percent of the 
time the test will indicate no gas when gas in fact exists. When gas does not exist, the test is 
accurate 90 percent of the time. Using these data, update the landowner's initial estimate 
that the probability of finding gas is 0.6 and then determine the recommended decision under 
the a posteriori criterion. 

Initially, P(S2) = 0.6, P(St) = 0.4. Let Ot designate the event that soundings indicate no gas. 
Then the reliability of the test is given by the conditional probabilities P(Ot I St) = 0.90 and P(Ot I S2) = 

0.30. Bayes' theorem, (4) of Problem 17.4, gives the updated probabilities as 

I 
P(o. 1 s.) P(s.) 

P(s. o.) = P(o. 1 s.) P(S.) + P(o.l S2) P(S2) 
(0.90)(0.4) 2 

(0.90)(0.4) + (0.30)(0.6) 3 

1 
P(S2I Ot) = 1- P(S.j Ot) = 3 

The a posteriori gain matrix is obtained from Table 17-2 by subtracting 30 (thousand dollars) from 
each entry, thereby reflecting the cost of the test. The expected gains (in thousands of dollars) for 
decisions Dt and D2, respectively, in terms of the updated probabilities are 

570 

I 

E(G. I o.) = (60 ·- 30)d) + (660- 30)(~) = 230 

E ( G2l Ot) = (--100 - 30)(~) + (2000- 30)(~) = 570 

Fig. 17-3 

30 



CHAP. 17] DECISION THEORY 203 

Since the maximum expected gain is associated with D2, D2 is the recommended decision under the a 
posteriori criterion. 

Figure 17-3 is the decision tree for this process. The probability that the soundings indicate no gas, 
P(8t), is unity, since the result of the experiment is known. 

17.7 Solve Problem 17.6 if the soundings had indicated that gas was present. 

Designate the event that soundings indicate gas by 82. From the data of Problem 17.6, 

P(82l s.) = 0.10 P(82l S2) = 0.70 

The initial probabilities are P(S.) = 0.4, P(S2) = 0.6; therefore, the updated probability distribution is 

I 
P(82l St) P(St) 

P(St 82) = P(82i St) P(St) + P(82i S2) P(S2) 
(0.10)(0.4) 

(0.10)(0.4) + (0.70)(0.6) = 
0

·
087 

P(S2l82) = 1 - P(St !82) = 0.913 

Again each entry in the original gain matrix, Table 17-2, must be reduced by 30 (thousand dollars) to 
reflect the cost of the test. Then the expected gains (in thousands of dollars) for decisions Dt and D2 
with respect to the latest probability distribution are 

E(G.I82) = (60- 30)(0.087) + (660- 30)(0.913) = 577.8 

E(G2l8z) = (-100- 30)(0.087) + (2000- 30)(0.913) = 1787.3 

Since the maximum expected gain is associated with D2, D2 is the recommended decision under the a 
posteriori criterion. 

Figure 17-4 is the decision tree for this process. The probability that the soundings indicate gas is 
present, P(82), is unity, since the result of the experiment is known. 

30 

1787.3 

I 

Fig. 17-4 

17.8 What is the recommended decision if the soundings discussed in Problems 17.6 and 17.7 have 
not been taken but are only being considered. 

This is now a two-stage decision process. First the landowner must decide whether to conduct 
soundings, and then she must decide whether to accept the energy company's offer. Write 

D 1 =the decision to conduct soundings 
Dn =the decision not to conduct soundings 

81 = the event that soundings indicate no gas 
82 = the event that soundings indicate gas 

The decision tree for this process is Fig. 17-5, which is essentially a composite of Figs. 17-1, 17-3, and 
17-4. The main differences are in P(8t) and P(82). These probabilities are no longer 1, as they were in 
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Figs. 17-3 and 17-4, because the result of the soundings is unknown. The states s. and Sz are, however, 
a disjoint, exhaustive set of outcomes; hence, from (3) of Problem 17.5 and the data provided in 
Problems 17.6 and 17.7, 

P(Ot) = P(Otl St) P(St) + P(Otl S2) P(S2) = (0.90)(0.4) + (0.30)(0.6) = 0.54 

P(82) = P(82l St) P(St) + P(82l S2) P(S2) = (0.10)(0.4) + (0.70)(0.6) = 0.46 

With these probabilities, the expected gain at node I is 

(570)(0.54) + (1787.3)(0.46) = 1130 

Since node B has a larger expected gain than node I, Dr is recommended over Dn. The recommended 
decisions, therefore, are not to conduct soundings and not to accept the offer of the energy com­
pany. Instead the landowner should begin exploring the land on her own immediately. 

Observe that the recommended decision is D2 regardless of whether soundings are taken and 
regardless of the outcome of the soundings if they are conducted. Thus, the soundings have no effect on 
the final decision and represent only an expense. This is reflected in the fact that the difference between 
the expected gains at nodes B and I in Fig. 17-5 is precisely the cost of the test. 

60 
420 St E 

Dt c 0.4 
660 Sz 

0.6 0 
-100 

St G 

Sz 
0.4 

2000 

0.6 ® 
30 

··~ Sz 
1!3 

2/~® 

-130 
St 0 

Sz 
2/3 1970 

1/3 p 

30 
St T 

Sz 
0.087 

630 

0.913 @) 
-130 

St 0 
Sz 

0.081 
1970 

0.9!3 ® 
Fig. 17-5 

17.9 A city is considering replacing its fleet of municipally owned, gasoline-powered automobiles 
by electric cars. The manufacturer of the electric cars claims that the city will experience 
significant savings over the life of the fleet if it converts, but the city has its doubts. If the 
manufacturer is correct, the city will save 1 million dollars. If the new technology is faulty, as 
some critics suggest, the conversion will cost the city $450 000. A third possibility is that 
neither situation will occur and the city will break even with the conversion. According to a 
recently completed consultant's report, the respective probabilities of these three events are 
0.25, 0.45, and 0.30. 
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The city has before it a pilot program that if implemented would indicate the potential 

cost or savings in a conversion to electric cars. The program involves renting three electric 
cars for 3 months and running them under normal conditions. The cost to the city of this 
pilot program would be $50 000. The city's consultant believes that the results of the pilot 

program would be significant but not conclusive; she submits Table 17-4, a compilation of 
probabilities based on the experience of other cities, to support her contention. What actions 

should the city take if it wants to maximize expected savings? 

Table 17-4 

A pilot program will indicate 

Savings No Change A Loss 

Saves Money 0.6 0.3 0.1 
Breaks Even 0.4 0.4 0.2 
Loses Money 0.1 0.5 0.4 

This is a two-stage process. First the city must decide whether to conduct the pilot program, and then 
it must decide whether to convert its fleet to electric cars. Set 

Dr ""the decision not to conduct the pilot program 
Dn "" the decision to conduct the pilot program 

81 ""the event that the pilot program indicates a savings 
82 ""the event that the pilot program indicates neither a savings nor a loss 
83"" the event that the pilot program indicates a loss 

Dt ""the decision to convert to electric cars 
D2"" the decision not to convert to electric cars 
s. ""the state that electric cars are cheaper to run than gasoline models 
S2 ""the state that electric cars cost the same to run as gasoline models 
SJ ""the state that electric cars are more expensive to run than gasoline models 

The gain matrix (in thousands of dollars) is 

St s2 s3 

Dt 1000 0 -450 
D2 0 0 0 

The initial probability distribution for the states has P(St) = 0.25, P(S2) = 0.30, and P(SJ) = 0.45. 
If the pilot program is not conducted, the initial probability distribution is not updated, and the 

expected gains for Dt and D2 are, respectively, 

E(Gt) = (1000)(0.25) + (0)(0.30) + (-450)(0.45) = 47.5 

E(G2)= (0)(0.25) + (0)(0.30) + (0)(0.45) = 0 

Since the maximum expected gain is associated with D~, Dt is the recommended decision under the a 
priori criterion. 

If the pilot program is conducted, all entries in the gain matrix must be reduced by 50 to reflect the 

cost of the test. It follows from Table 17-4 that 

P(8. 1 s.) = o.6 
P(82l s.) = 0.3 

P(83l s.) = 0.1 

P(8t I S2) = 0.4 

P(82l S2) = 0.4 

P(831 S2) = 0.2 

Using Bayes' theorem, (4) of Problem 17.5, we obtain 

P(8t I SJ) = 0.1 

P(82l SJ) = 0.5 

P(83l SJ) = 0.4 
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I 
- (0.6)(0.25) 

P(St 8•)- (0.6)(0.25) + (0.4)(0.30) + (0.1)(0.45) 0.4762 (1) 

(0.4)(0.30) 
P(S218•) = (0.6)(0.2.5)- (0.4)(0.30) + (0.1)(0.45) 03810 (2) 

(0.1)(0.45) 
P(S318t) = (0.6)(0.25) + (0.4)(0.30) + (0.1)(0.45) = 0.1429 (3) 

(0.3)(0.25) 
P(St 182) = (0.3)(0.25)- (0.4)(0.30) + (0.5)(0.45) 0.1786 (4) 

I 
- (0.4)(0.30) 

P(S2 82)- (0.3)(0.25) + (0.4)(0.30) + (0.5)(0.45) 0.2857 (5) 

(0 .5)(0 .45) 
P(S3I82) = (0.3)(0.2S) + (0.4)(0.30) + (O.S)(0.45) 0.5357 (6) 

(0.1 )(0.25) 
P(St I 83) = (0.1)(0.25) + (0.2)(0.30) + (0.4)(0.45) = 0.0943 (7) 

I 
(0.2)(0.30) 

P(S2 83) = (0.1)(0.25) + (0.2)(0.30) + (0.4)(0.45) = 
02264 (8) 

- (0.4)(0.45) 
P(S3183)- (0.1)(0.25) + (0.2)(0.30) + (0.4)(0.45) 0·6792 (9) 

To within roundoff errors, each set of three probabilities sums to 1. 
If the result of the pilot program is 8~, the updated probabilities are given by (1) through (3), and 

the expected gains for decisions Dt and D2 are, respectively, 

E(Gtl8t) = (950)(0.4762)+ (-50)(0.3810)+ (-500)(0.1429) = 361.9 

The recommended decision under the a posteriori criterion is Dt. 
If the result of the pilot program is 82, the updated probabilities are given by (4) through (6), and 

the expected gains for decisions Dt and D2 are, respectively, 

E(Gt l82) = (950)(0.1786)+ (-50)(0.2857) + (-500)(0.5357) = -112.5 

The recommended decision under the a posteriori criterion is D2. 
If the result of the pilot program is 83 , the updated probabilities are given by (7) through (9), and the 

expected gains for Dt and D2 are, respectively, 

E(Gt 183) = (950)(0.0943)+ (-50)(0.2264) + (-500)(0.6792) = -261.3 

The recommended decision under the a posteriori criterion is D2. 
The decision tree for this process is Fig. 17-6, wherein the results obtained so far appear on the 

unlettered nodes and the branches leading to and from those nodes. The expected gains at nodes B, E, 
F, and G are the gains associated with the succeeding nodes if the recommended decisions are taken. 

It follows from (3)of Problem 17.5 that 

P(8t) = P(8t I St) P(St) + P(8t I S2) P(S2) + P(8t I S3) P(S3) 

= (0.6)(0.25) + (0.4)(0.30) + (0.1)(0.45) = 0.315 

P(82) = P(82i St) P(St) + P(82i S2) P(S2) + P(82i S3) P(S3) 

= (0.3)(0.25) + (0.4)(0.30) + (0.5)(0.45) = 0.420 

P(83) = P(831 St) P(St) + P(831 S2)P(S2)+ P(83l S3) P(S3) 

= (0.1)(0.25) + (0.2)(0.30) + (0.4)(0.45) = 0.265 

Then the expected gain at node C is 

(361.9)(0.315) + (-50)(0.420) + (-50)(0.265) = 79.75 
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Fig. 17-6 
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Since this value is greater than the expected gain at node B, the decision leading to node C, namely Du, 
is the recommended one. The city should conduct the pilot program and then convert to electrically 
powered vehicles only if the pilot program has indicated a savings. This solution to the problem is 
represented in Fig. 17-6 by the subtree made up of all paths from node A that are not blocked by a cross. 

17.10 Devise a situation in which the gains listed in Table 17-2 do not realistically reflect the actual 
worth of the payoffs to the landowner in Example 17.1. Show how the von Neumann utility 
function can be used to correct the inequities. 

The payoffs in descending order of preference are 

e1 = $2 000 000 e2 = $660000 e3= $60000 e.= -$100 000 

If $100 000 represents the entire life savings of the landowner, then losing it would be catastrophic. 
Avoiding such a loss might be more important to the landowner than winning $2 000 000, yet this prefer­
ence is not reflected in the raw dollar figures of the payoffs. Furthermore, $660 000 might be enough 
money to satisfy all the landowner's earthly wants. Two million dollars is obviously better; but it might 
not be three times as valuable, as suggested by the raw numbers. 

The landowner might set the utility of e1 at 100 and that of e. at -1000 to reflect the fear of losing 
her life savings. After much introspection, she might find that she is indifferent between receiving e2 
with certainty and participating in the lottery .:t'(eh e.; 0.999). Then the utility of e2 would be 

u(e2) = (0.999) u(et) + (1- 0.999)u(e.) = (0.999)(100) + (0.001)(-1000) = 98.9 

The landowner might also find that she is indifferent between receiving e3 with 
certainty and participating in the lottery .:l'(e~, e.; 0.95). Then the utility of e3 
is 

u(e3) = (0.95)u(et) + (1- 0.95)u(e.) = (0.95)(100) + (0.05)(-1000) = 45 

The gain matrix for the decision process in terms of these utilities is Table 17-5. 

Dt 
Dz 

Table 17-5 

St 

45 
-1000 

Sz 

98.9 
100 

17.11 Determine the recommended decision under the a priori criterion for the landowner in 
Example 17.1, if the gain matrix is given by the utilities in Table 17-5 and if the landowner 
estimates the probability of gas being present as 0.6. 

With P(St) = 0.4 and P(S2) = 0.6, the expected gains for Dt and D2 are, respectively, 

E(Gt) = (45)(0.4)+ (98.9)(0.6) = 77.34 E(G2) = (-1000)(0.4) + (100)(0.6) = -340 

The recommended decision is Dt. Contrast this result with the result of Problem 17.3. 

17.12 A woman has a ticket to a football game on a day for which the weather bureau predicts rain 
with a likelihood of 40 percent. She can stay home and watch the game on television, the 
preferable choice under rainy conditions, or she can go to the stadium, the preferable choice 
under dry conditions. Which decision should she make? 

Designate the decision to go to the stadium by Dt and the decision to stay home by D2. The states 
of nature are St (it will rain) and S2 (it will not rain), with P(St) = 0.4, P(S2) = 0.6. The four possible 
combinations of events, listed in descending order of desirability to the woman, are 

e1: Goes to the stadium and it does not rain. 
e2: Stays home and it rains. 
e3 : Stays home and it does not rain. 
e.: Goes to the stadium and it rains. 

The individual quantifies her levels of satisfaction for e1 and e. at 100 and 0, respectively. After careful 
consideration, she feels that she would be indifferent to having e2 occur with certainty or participating in 
the lottery .:l'(e~, e.; 0.85). She sets the equivalence probability for e3 at p3 = 0.5. Therefore, 

u(e2) = (0.85)(100) + (0.15)(0) = 85 u(e3) = (0.5)(100) + (0.5)(0) =50 
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The gain matrix in terms of utilities for this process becomes 

s. s2 

Dt 0 100 
D2 85 50 

The expected gains for decisions Dt and D2 are, respectively, 

E(Gt)= (0)(0.4)+ (100)(0.6)= 60 

E(G2) = (85)(0.4) + (50)(0.6) = 64 

209 

Since E(G2) is greater than E(Gt), the recommended decision under the a priori criterion is D 2; the 
woman should stay home. 

17.13 Solve Problem 17.4 if the department store's utility for money is given by Fig. 17-7. 

Since the monetary amounts in Table 17-3 do not reflect the relative worth to the store of the vari­
ous payoffs, we replace each amount by its utility, obtaining Table 17-6. 

Utility 

-40 0 40 

Thousands of Dollars 

Fig. 17-7 

With P(S.) = 0.25, P(S2) = 0.4, P(S3) = 0.35, the expected gains are 

E(G.) = (0)(0.25) + (0.15)(0.4) + (1)(0.35) = 0.410 

E( G2) = (0.09)(0.25) + (0.38)(0.4) + (0.43)(0.35) = 0.325 

E(G2) = (0.72)(0.25) + (0.53)(0.4) + (0.02)(0.35) = 0.399 

E(G.) = (1)(0.25) + (0.48)(0.4) + (0)(0.35) = 0.442 

The recommended decision under the a priori criterion is now D 4. 

Dt 
D2 
D3 
D. 

Table 17-6 

s. s2 

0 0.15 
0.09 0.38 
0.72 0.53 

1 0.48 

s3 

1 
0.43 
0.02 

0 

17.14 The certainty equivalent of a decision with monetary payoffs is a dollar amount C having a 
utility equal to the expected utility of that decision. Determine the certainty equivalents for 
each of the decisions in Problem 17.13. 

The expected utility for D. was determined in Problem 17.13 to be 0.410. Using Fig. 17-7, we 
estimate u(33 000) = 0.410; hence c.= $33 000. 

Similarly, we estimate the certainty equivalents of D2, D3, and D. as C2 = $24 000, C3 = 
$32 000, and c. = $36 000, respectively. 
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17.15 The risk premium for a decision with monetary payoffs is the amount R by which the expected 
dollar gain from that decision exceeds the certainty equivalent of the decision. Determine 
the risk premiums for each of the decisions in Problem 17.13. 

The expected dollar gains for Dt through D. were obtained in Problem 17.4 as $15 500, $21 750, 
$22 500, and $20 250, respectively. Taking the differences between these amounts and their corres­
ponding certainty equivalents as determined in Problem 17.14, we find that 

Rt = 15 500-33000 = -$17 500 

R2 = 21 750- 24 000 = -$2250 

R3 = 22 500- 32 000 = -$9500 

R. = 20 250-36 000 = -$15 750 

Supplementary Problems 

17.16 Determine recommended decisions under each naive criterion for the following decision process. In the 
fall, a farmer is offered $50 000 for his orange crop, which will be harvested in the beginning of the 
following year. If the farmer accepts the offer, the money is his, regardless of the quality or quantity of 
the harvest. If the farmer does not accept the offer, he must sell his oranges on the open market after 
they are harvested. Under normal growing conditions, the farmer can anticipate receiving $70 000 on 
the open market for his harvest. If he experiences a frost, however, then much of his harvest will be 
ruined, and he can anticipate receiving only $1.5 000 on the open market. 

17.17 A manufacturer must decide whether to extend credit to a retailer wishing to open an account with the 
firm. Past experience with new accounts shows that 50 percent are poor risks, 30 percent are average 
risks, and 20 percent are good risks. If credit is extended, the manufacturer can expect to lose $30 000 
with a poor risk, make $25 000 with an average risk, and make $50 000 with a good risk. If credit is not 
extended, the manufacturer neither makes nor loses money, since no business is transacted with the 
retailer. Determine the recommended decision under the a priori criterion. 

17.18 A corporation is considering a new production process that, if efficient, will save the corporation 
$350 000 a year for the next 5 years. If it is not efficient, the amount of lost sales plus the expense of 
converting to the new process and then reconverting to the old will come to $925 000. Determine the 
recommended decision under the a priori criterion if the company feels that the new process has an 80 
percent chance of being efficient. 

17.19 Determine the recommended decision under the a priori criterion for the process of Problem 17.16 if, in 
the past, the farmer has lost much of his harvest to frost one out of every 7 years. 

17.20 Assume that prior to making a decision, the manufacturer described in Problem 17.17 pays $1000 for a 
credit rating report on the retailer. The report rates the retailer as a poor risk, but the manufacturer 
knows that the rating procedure is not totally reliable. The credit bureau concedes that it will rate an 
average risk as a poor risk 30 percent of the time, and it will rate a good risk as a poor risk 5 percent of 
the time. It will rate a poor risk correctly 90 percent of the time. Based on these data, determine the 
recommended decision for the manufacturer under the a posteriori criterion. 

17.21 The corporation of Problem 17.18 has a third option available to it; namely, to integrate one stand-alone 
phase of the new process into its current process and test its efficiency before deciding whether to 
convert. The cost of testing the stand-alone phase is $125 000, of which $75 000 is recoverable if the 
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new process is adopted. If the stand-alone phase is not efficient, then an additional $25 000 in sales is 
lost during the test. 

If the entire new process is efficient, then the stand-alone phase should operate efficiently with 
probability 0.99. If the entire new process is not efficient, the stand-alone phase could still operate 
efficiently, and the company estimates this would happen with probability 0.6. Construct a decision tree 
for the entire decision process and determine the recommended actions. 

17.22 The president of a firm in a highly competitive industry believes that an employee of the company is 
providing confidential information to the competition. She is 90 percent certain that this informer·is the 
treasurer of the firm, whose contacts have been extremely valuable in obtaining financing for the 
company. If she fires him and he is the informer, the company gains $100000. If he is fired but is not 
the informer, the company loses his expertise and still has an informer on the staff, for a net loss to the 
company of $500 000. If the president does not fire the treasurer, the company loses $300 000 whether 
or not he is the informer, since in either case the informer is still with the company. 

Before deciding the fate of the treasurer, the president could order lie detector tests. To avoid 
possible lawsuits, such tests would have to be administered to all company employees, at a total cost of 
$30 000. Another problem is that lie detector tests are not definitive. If a person is lying, the test will 
reveal it 90 percent of the time; but if a person is not lying, the test will indicate it only 70 percent of the 
time. What actions should the president take? 

17.23 A food processor is considering the introduction of a new line of instant lunches. On a national basis, 
the company estimates a net profit of 50 million dollars if the product is highly successful, a net profit of 
20 million dollars if it is moderately successful, and a loss of 14 million dollars if it is not successful. If 
the company does not introduce the line, its research and development costs totaling 3 million dollars 
must be written off as a loss. Current estimates place the probability of high success at 0.1 and the 
probability of moderate success at 0.4. 

Prior to introducing it on a national level, the company could test market the line on a regional 
basis. The cost of such a test would be one million dollars. Although the test results would be signifi­
cant, they would not be conclusive; the reliability of such a test is given by the conditional proba­
bilities in Table 17-7. What should be the processor's decisions? 

Test results wiD indicate 

High Moderate No 
Success Success Success 

Highly 
Successful 0.6 0.4 0 
Moderately 
Successful 0.2 0.6 0.2 
Not 
Successful 0.1 0.3 0.6 

17.24 Determine the maximum amount of money the city in Problem 17.9 should be willing to pay for the pilot 
program. (Hint: The value of a test is the difference between the expected gain of the process if the 
test is conducted at no cost and the expected gain of the process if no testing is conducted.) 

17.25 Determine the maximum amount of money that the president in Problem 17.22 should be willing to pay 
for lie detector tests. Construct a tree for the process. 

17.26 Solve Problem 17.23 if the processor's utility for money is given by Fig. 17-8. 
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u(x) 

I: 
I I 
I I 
I I 
I I 
II 
II 
I I 

I so 
.. 0 10 120 30 40 

-14 -3 19 x, 106 dollars 49 

Fig. 17-8 

17.27 Derive utilities for the dollar outcomes e1 = $5000, e2 = $4000, e3 = $3000, e.= $2000, and es = $1000 
if u(et) = 100, u(es) = -50, and the equivalence probabilities are P2 = 0.9, p3 = 0.7, and P• = 0.2. 

17.28 Determine the certainty equivalent and the risk premium for the recommended decisions in Problem 
17.26 

17.29 A decision maker is risk-seeking with respect to a decision process over a specified range of payoffs if his 
or her utility function u(x) is strictly convex (i.e., u"(x)>O) over that range. The decision maker is 
risk-averse if u(x) is strictly concave (i.e., u"(x)<O) over that range. If u(x) is a straight line (i.e., 
u"(x) = 0) on that range, the decision maker is risk-indifferent there. Determine the risk attitudes of 
the processor in Problem 17.26. 

17.30 From the definitions of concave and convex functions given in Chapter 11 and the fact that utility 
functions increase monotonically, show that risk premiums are positive for a risk-averse decision maker 
and negative for a risk-seeking decision maker. 

17.31 A regret matrix is a gain matrix in which the elements of each column have been diminished by the largest 
element of that column. Give the regret matrix corresponding to Table 17-3. 

17.32 Solve Problems 17.1 and 17.3 using the regret matrix instead of Table 17-2. Thereby verify that 
recommended decisions with a regret matrix need not be the same as those with a gain matrix under 
naive criteria, but the two matrices always yield the same recommended decision under the a priori 
criterion. 



Chapter 18 
Stochastic Dynamic Programming 

STOCHASTIC MULTISTAGE DECISION PROCESSES 

A multistage decision process is stochastic if the return associated with at least one decision in 
the process is random. This randomness generally enters in one of two ways: either the states (see 
Chapter 14) are uniquely determined by the decisions but the returns associated with one or more 
states are uncertain (see Problem 18.1) or the returns are uniquely determined by the states but the 
states arising from one or more decisions are uncertain (see Problem 18.2). 

If the probability distributions governing the random events are known and if the number of 
stages and the number of states are finite, then the dynamic programming approach introduced in 
Chapter 14 is useful for optimizing a stochastic multistage decision process. The general procedure 
is to optimize the expected value of the return. (For an exception, see Problem 18.3.) In those 
cases where the randomness occurs exclusively in the returns associated with the states and not in the 
states arising from the decisions, this procedure has the. effect of transforming a stochastic process 
into a deterministic one. 

POLICY TABLES 

For processes in which randomness exists in the states associated with the decisions, a policy-in 
particular, an optimal policy-may be exhibited as a policy table, similar to Table 18-1. Here, di(ak) 
(j = 1, 2, ... , n; k = 1, 2, ... , r) denotes the decision at stage j if the process finds itself in state 
ak. (See Problem 18.3.) 

Table 18-1 

States 

at a2 ... a, 

1 dt(at) d1(a2) ... dt(a,) 
2 d2(a1) d2(a2) ... d2(a,) 

. .. ······· ..... ·········· ........ 

n d.(aJ) d.(a2) ... d.(a,) 

Solved Problems 

18.1 Eight bushels of oranges are to be distributed among three stores. The demand for oranges 
at each store is random, according to the probability distributions shown in Table 18-2. 
The profit per sold bushel at stores 1, 2, and 3 is $18, $20, and $21, respectively. Determine 
the number of bushels (constrained to be an integer) that should be allocated to each store to 
maximize expected total profit. 

This is a three-stage decision process, with stage j representing a delivery of oranges to store j. The 
states for each stage are u = 0, 1, ... , 8, representing the numbers of bushels available for delivery 

213 
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Table 18-2 

Demand Probabilities 
--

Bushels Store 1 Store 2 Store 3 

0 0.1 0 0.1 
I 0.2 0.2 0.3 
2 0.3 0.6 0.2 
3 0.2 0 0.2 
4 0.1 0.2 0 
5 0.1 0 0.2 

to a store. There is no randomness in the state resulting from any decision-if 2 bushels are allocated to a 
store, then that store will stock 2 bushels-but there is randomness in the return from any state. With 2 
bushels in stock, a store may sell either 0 .. 1. or 2 bushels, with each possibility generating a different 
profit. Consequently, we maximize expected total profit rather than total profit. We define 

/i(x) = the expected profit from allocating x bushels to store j 

mi(u) =the maximum expected total profit beginning at stage j in state u 

di(u) =the decision taken at stage j that achieves mi(u) 

The values of the payoff functions (in dollars) are exhibited in Table 18-3. A typical calculation-say, 
that of f,(3)-follows: With 3 bushels allocated to it, store 1 makes a profit of $0 if 0 bushels are sold; 
$18 if 1; $36 if 2; $54 if 3. The respective probabilities of the first three of these events are, from Table 18-2, 
0.1, 0.2, and 0.3. The probability of the fourth event is the probability that the demand will equal or exceed 3 
bushels, 0.2 + 0.1 + 0.1 = 0.4. Thus, 

{!(3) = (0)(0.1) + {18)(0.2) + (36)(0.3) + (54)(0.4) = 36 

In terms of these !J(x ), we have a formally deterministic problem that is covered by the model 

Table 18-3 

~ 0 1 2 _, 4 5 6 7 8 

/J(x) 0 16.20 28.80 36.00 39.60 41.40 41.40 41.40 41.40 

h(x) 0 20.00 36.00 40.00 44.00 44.00 44.00 44.00 44.00 

h(x) 0 18.90 31.50 39.90 44.10 48.30 48.30 48.30 

Table 18-4 

u 

0 1 2 3 4 5 6 7 8 

m3(u) 0 18.90 31.50 39.90 44.10 48.30 48.30 48.30 48.30 

d3(u) 0 1 2 3 4 5 5 5 5 

m2(u) 0 20.00 38.90 54.90 67.50 75.90 80.10 84.30 88.30 

d2(u) 0 1 1 " 2 2 2 2 3 "' 

m,(u) ... . '. . . . . .. . . . . ' . . .. . ' . 111.90 

d,(u) . . . . . . . . . . . . . . . . . . . .. ... 3 
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(14.1). Applying the techniques of Chapter 14, we generate Table 18-4. The optimal policy is to 
allocate 3 bushels of oranges to store 1, 2 bushels to store 2, and 3 bushels to store 3, for an expected 
total profit of $111.90. 

18.2 A person has 3 (thousand-dollar) units of money available for investment in a business oppor­
tunity that matures in 1 year. The opportunity is risky in that the return is either double or 
nothing. Based on past performance, the likelihood of doubling one's money is 0.6, while 
the chance of losing an investment is 0.4. Determine an investment strategy for the next 

4 years that will maximize expected total holdings at the end of that period, if money 
earned one year can be reinvested in a later year and if investments are restricted to unit 
amounts. 

This is a four-stage process, with each stage representing a year. The states are the amounts 
available for investment: U4 = 0, 1, ... , 24 (the last obtained by investing all available funds each year 
and having the investment double each time) for stage 4; U3 = 0, 1, ... , 12 for stage 3; u2 = 0, 1, 
... , 6 for stage 2; Ut = 3 for stage 1. Randomness here occurs in the state induced by a particular 
decision. For example, if one has 3 units (i.e., the present state is 3) and decides to invest 2 units, then 
the succeeding state is either 5 or 1, depending on whether the invested amount is doubled or is 
lost. Write 

m1(u1) ""the maximum expected holdings at the end of the process, starting in state u1 at stage j 

d1(u1) ==the amount invested at stage j that achieves m1(u1) 

If one enters stage j with u1 units, then x units (x = 0, 1, ... , u1) may be invested, leaving u1 - x units in 
reserve. If the invested amount doubles, there will be 

2x + (u1 - X)= Uj +X 

units available for the next stage; if the invested units are lost, then only the reserve of (u1 - x) units will 
be available for the next stage. The best return from that point is either m1+t(u1 + x) or m1+1(u1 - x), the 
expected value of this best return being 

0.6m1+t(u1 + x) + 0.4m1+t(u1 - x) 

The optimal choice for x is that amount which maximizes the above expression: 

m1(u1) =maximum [0.6m1+t(u1 + x) + 0.4m1+t(u1 - x)] 
x=O,t .... , Uj 

(1) 

Equation (1), the recursion formula for the process, holds for j = 1, 2, 3; it also holds for j = 4, under 
the end condition ms(u) == u. It is obvious that since ms is a linear, increasing function, so are 
m4, ... , mt. Indeed, carrying out the maximization in (1), we readily obtain 

with d1(u1) = u1 (j = 4, 3, 2, 1). Thus the optimal expected holdings is 

m t(3) = (1.2t(3) = 6.2208 units 

obtained by investing all available units each year of the process. Note that such an optimal policy 
results in either 48 units or 0 units at the end of 4 years, depending on whether all investments double or 
one investment is completely lost. Nonetheless, the expected return under that policy is 

(48)(0.6)4 + (0)[1 - (0.6t] = 6.2208 units 

where (0.6t is the probability that all four investments are successful and 1 - (0.6t is the probability that 
at least one investment fails. 

18.3 Solve Problem 18.2 if the objective is to maximize the probability of accumulating holdings of 
at least 5 (thousand-dollar) units after 4 years. 

This problem deals not with the expected value of the return but rather with the probability that the 
return is of a certain size. For example, if the investor adopts the policy of investing all available units 
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at each stage, then, as was shown in Problem 18.2, the probability that he or she ends up with 5 or more 
units is (0.6t = 0.1296. The question is: can that value be bettered by another choice of policy? 

The states and stages are as defined in Problem 18.2. Write 

E ==the event of finishing the process with 5 or more units 

m1(u1) ==the probability of E given that the state at stage j is u1 and an optimal policy is followed 
from stage j onwards 

d1(u1) ==the amount invested at stage j that achieves m1(u1) 

If x units (x = 0, 1, ... , u1) are invested at stage j, then, as in Problem 18.2, 

P(u1+1 = u1 + x) = 0.6 P(uJ+I = u1 - x) = 0.4 

By the rules of conditional probabilities [(3) of Problem 17.5, with H1 =="double" and H2""" "nothing"], 
the expression 

0.6m1+1(u1 + x) + OAm1+1(u1- x) 

represents the probability of E given Uj, the decision x, and an optimal continuation from stage 
j + 1. Hence, 

m1(u1) =maximum [0.6m1+1(u1 + x) + OAm1+1(u1- x)] (1) 
x=O.l ... .. Uj 

for j = 1, 2, 3. Formally, this is identical to the difference equation obtained in Problem 18.2; however, 
a new end condition applies. 

Conditioning on the outcome of the final investment decision, we have 

m4(u4) =maximum [0.6P(u4 + x 2: 5) + 0.4P(u4- x 2: 5)] 
x=O.l . .. , U4 

'=max [F+ G] (2) 
X 

With the aid of Fig. 18-1, we carry out the maximization in (2), obtaining 

m4(u4) ={ 0:6 
u4=0,1,2 

d.( •• )~U 
u4=0, 1,2 

u4= 3, 4 with u4= 3 
(3) u4= 4 U4 = 5, 6, ... , 24 

U4 = 5, 6, ... , 24 

where the smallest optimal investment d4(u4) has been indicated. 

X 

Fig. 18-1 
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Table 18-5 presents the solution of (1) subject to the end condition (3). Again, only the smallest 
d1(u1) is listed in the event of a tie. It is seen that the maximum probability for accumulating at least 5 
units of money in 4 years is 0.7056. A policy table, of the form of Table 18-1, for realizing this maxi­
mum probability may be composed by extracting rows 8, 4, 6, and 2 of Table 18-5. Either table shows 
that under this particular optimal policy the investor finishes with 0, 1, or 5 units, the probability of the 
last event being 0. 7056. Alternative optimal policies exist which allow the investor to accumulate more 
than 5 units, but always with a probability of 0.7056 for 5 or more units. 

Table 18-5 

0 1 2 3 4 5 6 ... 12 . .. 24 

m4(u4) 0 0 0 0.6 0.6 1 1 ... 1 . .. 1 

d4(u4) 0 0 0 2 1 0 0 . . . 0 ... 0 

m3(u3) 0 0 0.36 0.6 0.84 1 1 ... 1 

d3(U3) 0 0 1 0 1 0 0 ... 0 

m2(u2) 0 0.216 0.504 0.648 0.84 1 1 

d2(u2) 0 1 2 1 0 0 0 

m 1(u1) . . . ... . .. 0.7056 

dJ(UJ) . . . . . . ... 1 

18.4 The manufacturer of a space shuttle for NASA has the capability to produce at most two 
shuttles each year. It takes a full year to manufacture a shuttle, but since orders are not 
placed by NASA until July, for delivery in December, the manufacturer must set the produc­
tion schedule prior to knowing the exact demand. This demand will be for either one shuttle, 
with probability 0.6, or two shuttles, with probability 0.4. Any shuttle ordered but not de­
livered incurs a penalty cost of 1.5 million dollars and must be delivered the following year, 
taking priority over any new orders in the future. Production costs are a function of the num­
ber of shuttles made, with the cost of one shuttle set at 10 million dollars and the cost of two 
shuttles set at 19 million dollars. Overproduction can be stored for future delivery, at a cost 
of 1.1 million dollars per shuttle per year, and is limited by company policy to a maximum of 1 
shuttle. Determine a production schedule for the next 3 years that will minimize expected 
total cost, if the current inventory is zero shuttles. 

We view this as a four-stage process, with stages 1, 2, and 3 representing the next 3 years in the 
planning horizon, respectively, and stage 4 representing the delayed production of those shuttles ordered 
in year 3 but not delivered. The states are the possible inventories at the beginning of a stage: they 
range from a low of -2 (signifying two shuttles ordered but not delivered) to a high of 1. We set 

u =the number of shuttles in inventory (u = -2, -1, 0, 1) 

m1(u) =the minimum expected cost for completing the process beginning at stage j in state u 

d1(u) =the production in stage j that achieves m1(u) 

D =the yearly demand [P(D = 1) = 0.6, P(D = 2) = 0.4] 

f(x) =the cost of producing x shuttles in 1 year 

If the firm enters stage j (j = 1, 2, 3) with u = 0, 1 shuttles in inventory and decides to produce x 
additional shuttles (x = 0, 1, 2) in that stage, it incurs a carrying charge of 1.1 u on its inventory and a 
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production cost f(x) for the new shuttles, for a yearly expenditure of 

f(x)+ 1.1 u (1) 

The total number of shuttles available for delivery at the end of the year is u + x, which leaves u + x - D 
shuttles in inventory for the following stage. The minimum cost of completing the process from that point is 
mi+ 1(u + x- D). Since D = 1 withprobability0.6and D = 2 withprobability0.4, the minimum expect­
ed cost to completion beginning with stage j + 1 is 

0.6mj+t(U +X- 1) + 0.4mi+t(U +X- 2) (2) 

Therefore, the minimum expected cost to completion from stage j is the minimum, with respect to x, of 
the sum of (1) and (2): 

mi(u) = 1.1 u + min (f(x) + 0.6mi+t(U + x- 1) + 0.4mi+t(u + x- 2)] 
x=0.1.2 

(3) 

for u = 0, 1 and j = 1, 2, 3. Here we agree that mi(3) = +M for all j. 
If the firm enters stage j with u = -2 or u = -1, then it had a shortfall of -u shuttles from the 

previous stage and is subject to a penalty cost of -1.5 u. A decision to produce x shuttles, where x must be 
at least as great as- u to satisfy the previous shortfall, results in a production cost of f(x ). The resulting cost 
to the company in stage j is 

f(x) -1.5 u 

Continuing the analysis as in the case u = 0, 1, we obtain the recursion formula 

mi(u) = -1.5u + min [f(x) + 0.6mi+t(u + x- 1) + 0.4mi+t (u + x- 2)] 
x=-u .. ,.,2 

for u = -2, -1 and j = 1, 2, 3. We can replace (3) and (5) by the single relation 

mi(u) = g(u) + min [f(x) + 0.6mi+t(U + x- 1) + 0.4mi+t(u + x- 2)] 
x=-u .... , 2 

for u = -2, ... , 1 and j = 1, 2, 3, provided we define 

u ;,.,O 
u<O 

and /(-1)=+M 

(4) 

(5) 

(6) 

The stepwise solution of (6), extended to f = 4 with the end condition ms(u) = 0, is given in Table 
18-6. The minimum expected cost is 42.24 million dollars, achieved by the optimal policy shown in 
Table 18-7. 

Table 18-6 Table 18-7 

u Inventory levels 

-2 -1 0 1 -2 -1 0 1 

m4(u) 22 11.5 0 1.1 1 . . . ... 2 . .. 
2 2 2 2 0 

d4(u) 2 1 0 0 3 2 2 1 0 
4 2 1 0 0 

m3(u) 37.7 25.1 14.6 5.7 

d3(u) 2 2 1 0 

m2(u) 52.14 39.3 28.26 19.9 

d2(u) 2 2 2 0 

mt(u) ... . .. 42.24 . .. 

dt(U) ... . .. 2 . .. 
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18.5 A Presidential nominee has reduced the field of possible Vice Presidential running mates to 
three people. Each of these candidates has been rated on a scale from 1 {lowest) to 10 
(highest); person 1 received 10 points, person 2 received 8 points, and person 3 received 5 
points. The probability of person i (i = 1, 2, 3) accepting the jth (j = 1, 2, 3) offer to run for 
Vice President (assuming the first j- 1 offers, to other people, were declined) is denoted by Pii> 

where 

Pu = 0.5 Ptz= 0.2 Pt3= 0 

Pzt = 0.9 P22 = 0.5 P23 = 0.2 

P3t = 1 P32 = 0.8 P33 = 0.4 

In what order should the three potential running mates be offered the Vice Presidential 
nomination if the Presidential nominee wants to maximize the expected number of points? 

It is assumed that no person is asked more than once, and that each time a candidate declines, 
another is asked, until either one candidate accepts or all have declined. We then have a three-stage 
process, with stage j representing the jth position in the asking order. We take the states to be the sets 
of people still unasked. Stage 1 then has the single state 

Uu = {1, 2, 3} 

stage 2 has the three states 

U21 = {1,2} U22 = {1, 3} U23 = {2, 3} 

and stage 3 has the three states 

u31 = {1} U32= {2} u33 = {3} 

We set 

m1(~k) =the maximum expected number of points achievable starting at stage j in state ~k, given 
that there was no acceptance in previous stages 

d1(~k)=the person to ask in stage j in order to achieve m1 (~k) 

V; =the point-value of person i 

For this problem, the recursion formula is 

(1) 

that is, if in stage j person i is asked and accepts, the payoff is Vi; whereas, if that individual declines, the 
best continuation is from the state consisting of the remaining unasked persons. Formula (1) holds 
for j = 1, 2, 3 if we define m4( U) = 0. It is seen that the present problem is a stochastic version of 
Problem 14.20. 

Stage 3 

Stage 2 

m3(U31) = 10(0) = 0 

m3(U32) = 8(0.2) = 1.6 

m3(U33) = 5(0.4) = 2.0 

with d3(U31) = 1 

with d3(U32) = 2 

with d3(U33) = 3 

m2(U21) =max {10(0.2) + (1- 0.2)m3(U32), 8(0.5) + (1- 0.5)mJ(UJt)} 

=max {2+ (0.8)(1.6), 4+ (0.5)(0)} = 4 with d2(U21) = 2 

m 2(U22) =max {10(0.2) + (1- 0.2)m3(U33), 5(0.8) + (1- 0.8)m3(U31)} 

=max {2 + (0.8)(2.0), 4 + (0.2)(0)} = 4 with d2(U22) = 3 

m 2(U23) = max {8(0.5) + (1- 0.5)mJ(U33), 5(0.8) + (1- 0.8)m3(U32)} 

=max {4+ (0.5)(2), 4 + (0.2)(1.6)} = 5 with d2(U23) = 2 
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m1(U11) = max {10(0.5) + (1- 0.5)m2(U2~), 8(0.9) + (1- 0.9)m2(U22), 5(1) + (1- 1)m2(U21)} 

=max {5 + (0.5)(5), 7.2 + (0 1)(4), 5 + 0(4)} 

= 7.6 with d1(U11) = 2 

The optimal policy is to ask person 2 first; if that person declines, then to ask person 3 [d2(U22) = 3]; and 
if that person declines, then to ask person 1. The expected number of points from such a policy is 7.6. 

Supplementary Problems 

18.6 Solve Problem 18.1 with the additional consideration that any unsold oranges spoil, resulting in a loss of 
$15 per bushel. 

18.7 A person has $2000 available for investment and two opportunities, A and B. Both opportunities are 
risky; the possible yearly returns per each $1000 invested and the probabilities of realizing these returns 
are given in Table 18-8. 

Table 18-8 

Rerum,$ Probability 

3000 0.4 
A --

(I 0.6 

2000 0.2 
B --

1000 0.8 

Determine an investment strategy for the next 3 years that will maximize expected final holdings, if the 
person is restricted to either one $1000 investment or a zero investment each year. 

18.8 Solve Problem 18.7 if the objective is to maximize the probability of accumulating at least $5000 after 3 
years. 

18.9 An oil company has 8 units of money available for exploration of three sites. If oil is present at a site, 
the probability of finding it is a function of the funds allocated for exploring the site, as detailed in Table 
18-9. 

Table 18-9 

Units Allocated 

0 I 2 3 4 5 6 7 8 

Site I 0 0 0.1 0.2 0.3 0.5 0.7 0.9 1 
Site 2 0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 1 
Site 3 0 0.1 0.1 0.2 0.3 0.5 0.8 0.9 1 

The probabilities that oil exists at the sites are 0.4, 0.3, and 0.2, respectively. How much money should 
be allocated to exploration of each site to maximize the probability of discovering oil? 
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18.10 A department manager has 4 weeks to complete a project that requires 10 units of work. The depart­
ment has six people who can be assigned to the project each week. The costs (in thousand-dollar units) 
and the work that can be accomplished depend on the number of people assigned to the project each 
week, as follows: 

People 
0 1 2 3 4 5 6 Assigned 

Work Units 
0 2 4 6 7 9 10 Completed 

Cost 0 1 2 4 8 16 32 

Once assignments are made for the week, the Vice President for Operations may transfer people to jobs 
outside of the department. This happens often enough that the department manager must take the 
possibility into account in allocating personnel. Although the vice president never pulls everyone from 
a project, there is a 20 percent chance of losing one person whenever two or more are assigned to the 
same project, and a 10 percent chance of losing two people if three or more are assigned to a project. 
Any person transferred from the department for the week is not charged against the department, and 
returns to the department at the end of the week. Determine an optimal policy for assigning people 
to this one project over the next 4 weeks that will minimize expected total cost to the department yet 
guarantee that the project will be completed on time. 

18.11 A manufacturing firm has placed an order for a new production facility that will be installed in 4 years. 
Until that time, it must use the current facility, which includes a particularly troublesome machine. Each 
year a decision is made whether to keep the existing machine in the facility or to replace it with a new 
model. The cost data for such machines are as follows: (1) A u-year-old machine costs (500 + 10u2

) 

dollars to operate for one year. (2) An operable u-year-old machine has a salvage value of (200- 30u) 
dollars; an inoperable machine has no salvage value. (3) The cost of a new machine j years in the future 
is (300 + 100j) dollars. (4) The probability that a machine will experience a catastrophic failure which 
is beyond repair is 0.75, regardless of the age of the machine. It is assumed that a catastrophe can 
occur only at the very end of the year. 

Determine an optimal replacement policy for this piece of equipment over the next 4 years if the 
current machine is 1 year old. 

18.12 A computer firm has the capability to manufacture as many as four computers each week. The demand 
for computers is variable, being governed by the probability distributions given in Table 18-10. 

Table 18-10 

Demand 

0 1 2 3 4 5 

1 0 0.1 0.2 0.5 0.2 0 
2 0 0.1 0.1 0.2 0.5 0.1 
3 0.1 0.2 0.4 0.2 0.1 0 

Production costs are a function of the number of computers manufactured and are given (in thousands of 
dollars) as follows: 

Units Produced 0 1 2 3 4 

Cost 0 18 30 42 56 
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Computers can be delivered to customers at the end of the week of manufacture, or they can be stored 
for future delivery at a cost of $4000 per computer per week. Orders that are not filled during the week 
they are placed incur a penalty cost of $2000 per computer per week and must be filled as soon as 
possible during the following weeks. How many computers should the firm produce in the next 3 weeks 
to minimize expected total cost of satisfying demand, if the current inventory is zero? 

18.13 An electronic system consists of three components in series. The components function independently of 
one another, and each component must function if the system as a whole is to function. The reliability 
of the system (the probability that it will function) can be improved by installing several parallel units in 
one or more of the components. The probability that a component will function depends on the 
number of parallel units installed, according to Table 18-11. 

Table 18-11 

Units in Parallel 
r---

1 2 3 4 5 

Component 1 0.40 0.64 0.78 0.87 0.92 

Component 2 0.50 0.75 0.88 0.94 0.97 

Component 3 0.60 0.84 0.94 0.97 0.99 

The cost for each unit is $100 for component I, $200 for component 2, and $300 for component 3. 
Determine how many units of each component should be designed into the system to maximize the reli­
ability, if the cost of the components is not to exceed $1000. (Hint: This problem is deterministic, 
despite the fact that the return is a probability. Choose as the objective function the logarithm of the 
reliability, and take as the state at stage j the number of hundred-dollar cost units that may be spent for 
units of component j.) 

18.14 A contractor needs three different components to complete a project by its due date. Three sub­
contractors are available to manufacture each of these components. The probability that a sub­
contractor will deliver an ordered component by the due date is listed in Table 18-12. 

Table 18-12 

Component 1 Component 2 Component 3 

Subcontractor 1 0.83 0.92 0.91 
Subcontractor 2 0.89 0.83 0.85 
Subcontractor 3 0.91 0.93 0.93 

Determine an optimal assignment policy that will maximize the probability of all components being 
delivered by the due date, if no subcontractor can be awarded more than one job. (Hint: Maximize the 
logarithm of the probability, proceeding as in Problem 14.20.) 

18.15 Determine a recursion formula for the following problem. A physician wishes to raise a patient's level 
of a particular antibody at least 6 units over a 4-day period by prescribing pills for the patient to take 
each evening. The actual amount of antibody absorbed by the patient, which is a function of the 
number of pills taken, is limited to a maximum of 3 units per day. The absorption rates, along with the 
probabilities that the patient will experience a reaction severe enough to keep him from work the follow­
ing day, are given in Table 18-13. Determine a dosage schedule for the patient that will achieve the 
prescribed level of antibody with the minimum expected number of workdays lost. 
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Table 18-13 

Daily Dosage 
0 1 2 3 4 5 6 7 of Pills 

Units of Antibody 
0 0.9 1.7 2.4 2.9 3.0 3.0 3.0 Absorbed 

Probability of 
Missing Work 0 0.05 0.15 0.30 0.50 0.70 0.95 1 
the Next Day 

18.16 Determine a recursion formula for the following problem. A contractor has two projects that must be 
completed in 5 days. Project 1 still requires 16 units of work· and project 2 needs 23 units of work. 
The contractor employs five crews full-time, at a cost of $1000 per day per crew, and, at any time, can 
subcontract work to outside crews at a cost of $1500 per day per crew. The units of work accom­
plished on each project are a function of the number of crews assigned to the project, as shown in Table 
18-14. Crew schedules are set each evening for the next day, and always include assignments for all 
five of the contractor's own crews. However, 10 percent of the time, one of the contractor's crews 
will call in sick the following day, in which event that crew is not paid for the day. Subcontracted crews 
are never sick. Project 1 has priority; so that if a crew calls in sick, project 1 is still guaranteed its 
assignment of contractor's crews, unless that assignment was five. In that case, project 1 receives only 
four contractor's crews. No more than six crews are ever assigned to a single project on any day, and 
once a crew arrives at a project it stays there for the entire day. How may the contractor complete both 
projects in the prescribed time at minimum expected cost? 

Table 18-14 

Number of 
0 Crews Assigned 1 2 3 4 5 6 

Work Completed, 
0 1 1.9 2.7 3.5 4.2 5.0 Project 1 

Work Completed, 
0 1 1.9 2.8 3.7 4.5 5.2 Project 2 

18.17 Obtain the recursion formula for the following problem. A Presidential candidate for a major-party 
nomination needs 100 electoral votes to clinch the nomination. There are five winner-take-all primaries 
remaining, and the candidate has 10 units of money available to spend on them. The probability of 
winning a primary is a function of the money spent on it, as shown in Table 18-15. 

Table 18-15 

Units of Money Spent 

0 1 2 3 4 5 6 7 

Primary 1 0.10 0.15 0.25 0.38 0.44 0.48 0.54 0.60 
Primary 2 0.15 0.21 0.27 0.40 0.45 0.51 0.56 0.61 
Primary 3 0.05 0.12 0.17 0.22 0.27 0.31 0.35 0.38 
Primary 4 0.20 0.25 0.31 0.38 0.45 0.52 0.59 0.67 
Primary 5 0.17 0.22 0.29 0.30 0.38 0.44 0.51 0.55 

The probability of winning any primary does not increase if more than 7 units of money are allocated to 
it. There are 89 votes at stake in primary 1, 69 votes in primary 2, 52 votes in primary 3, 38 votes in 
primary 4, and 21 votes in primary 5. Determine a policy for maximizing the candidate's chances of 
winning at least 100 votes. 



Chapter 19 
Finite Markov Chains 

MARKOV PROCESSES 

A Markov process consists of a set of objects and a set of states such that 

(i) at any given time each object must be in a state (distinct objects need not be in distinct states); 

(ii) the probability that an object moves from one state to another state (which may be the 
same as the first state) in one time period depends only on those two states. 

The integral numbers of time periods past the moment when the process is started represent the 
stages of the process, which may be finite or infinite. If the number of states is finite or countably 
infinite, the Markov process is a Markov chain. A finite Markov chain is one having a finite number 
of states. 

We denote the probability of moving from state ito state j in one time period by p;1. For anN­
state Markov chain (where N is a fixed positive integer), the N x N matrix P = [p;1] is the sto­
chastic or transition matrix associated with the process. Necessarily, the elements of each row of P 
sum to unity. Furthermore, 

Theorem 19.1: Every stochastic matrix has 1 as an eigenvalue (possibly multiple), and none of the 
eigenvalues exceeds 1 in absolute value. 

(See Problems 19.14 and 19.32.) Because of the way Pis defined, it proves convenient in this chapter 
to indicate N -dimensional vectors as row vectors, with matrices operating on them from the right. 
According to Theorem 19.1, there exists a vector X¥ 0 such that 

XP=X 

This left eigenvector is called a fixed point of P. 

Example 19.1 Census data divide households into economically stable and economically depressed populations. 
Over a 10-year period the probability of a stable household remaining stable is 0.92, while the probability 
of a stable household becoming depressed is 0.08. The probability of a depressed household becoming 
stable is 0.03, while the probability of a depressed household remaining depressed is 0.97. 

If we designate economic stability as state 1 and economic depression as state 2, then we can model this 
process with a two-state Markov chain, having the transition matrix 

p = [0.92 0.08] 
0.03 0.97 

POWERS OF STOCHASTIC MATRICES 

Denote the nth power of a matrix P by P" = [p\j>]. If P is stochastic, then p\j> represents the 
probability that an object moves from state i to state j in n time periods. (See Problem 19.12.) It 
follows that P" is also a stochastic matrix. 

Denote the proportion of objects in state i at the end of the nth time period by xl">, and des­
ignate 

x<n) = [x<n) x<n> x<">] 
1 ' 2 ' .. ·' N 

the distribution vector for the end of the nth time period. Accordingly, 

224 
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..rill)= [x(O> x<O> x<o>] 
A"- 1' 2 '. • ·' N 

represents the proportion of objects in each state at the beginning of the process. x<n> is related to 
X(O) by the equation 

X(n) = X(O)pn (19.1) 

(See Problems 19.6 and 19.7.) In writing (19.1), we implicitly identify the probability p;1 with the 
proportion of objects in state i that make the transition to state j in one time period. 

ERGODIC MATRICES 

A stochastic matrix P is ergodic if limP" exists; that is, if each p<~> has a limit as n ~ oo. We 
n~~ Q 

denote the limit matrix, necessarily a stochastic matrix, by L. The components of x<"'>, defined by 
the equation 

(19.2) 

are the limiting state distributions and represent the approximate proportions of objects in the various 
states of a Markov chain after a large number of time periods. (See Problems 19.6, 19.8, and 19.9.) 

Theorem 19.2: A stochastic matrix is ergodic if and only if the only eigenvalue A of magnitude 1 is 
1 itself and, if A = 1 has multiplicity k, there exist k linearly independent (left) 
eigenvectors associated with this eigenvalue. 

(See Problem 19.5.) 

Theorem 19.3: If every eigenvalue of a matrix P yields linearly independent (left) eigenvectors in 
number equal to its multiplicity, then there exists a nonsingular matrix M, whose 
rows are left eigenvectors of P, such that D = MPM-1 is a diagonal matrix. The diag­
onal elements of D are the eigenvalues of P, repeated according to multiplicity. 

(See Problem 19.33.) We adopt the convention of positioning the eigenvectors corresponding to A = 1 
above all other eigenvectors in M. Then, for a diagonalizable, ergodic, N x N matrix P with A = 1 of 
multiplicity k, the limit matrix L may be calculated as 

1 
1 

L = M- 1(lim D")M = M- 1 

n-+"' 1 M (19.3) 
0 

0 

The diagonal matrix on the right has k 1 's and (N - k) O's on the main diagonal. (See Problem 
19.5.) 

REGULAR MATRICES 

A stochastic matrix is regular if one of its powers contains only positive elements. (See Problems 
19.3 and 19.4.) 

Theorem 19.4: If a stochastic matrix is regular, then 1 is an eigenvalue of multiplicity one, and all 
other eigenvalues A; satisfy lAd < 1. 

Theorem 19.5: A regular matrix is ergodic. 



226 PROBABILISTIC METHODS [PART II 

If Pis regular, with limit matrix L, then the rows of L are identical with one another, each being 
the unique left eigenvector of P associated with the eigenvalue A = 1 and having the sum of its 
components equal to unity. (See Problem 19.13.) Denote this eigenvector by E1. It follows directly 
from (19.2) that if Pis regular, then, regardless of the initial distribution x<o>, 

(19.4) 

(See Problems 19.6, 19.7, and 19.11.) 

Solved Problems 

19.1 Formulate the following process as a Markov chain. The manufacturer of Hi-Glo toothpaste 
currently controls 60 percent of the market in a particular city. Data from the previous year 
show that 88 percent of Hi-Glo's customers remained loyal to Hi-Glo, while 12 percent of 
Hi-Glo's customers switched to rival brands. In addition, 85 percent of the competition's 
customers remained loyal to the competition, while the other 15 percent switched to Hi­
Glo. Assuming that these trends continue, determine Hi-Glo's share of the market (a) in 5 
years and (b) over the long run. 

We take state 1 to be consumption of Hi-Glo toothpaste and state 2 to be consumption of a rival 
brand. Then pu, the probability that a Hi-Glo consumer remains loyal to Hi-Glo, is 0.88; Pt2, the 
probability that a Hi-Glo consumer switches to another brand, is 0.12; P21, the probability that the 
consumer of another brand switches to Hi-Glo, is 0.15; and p22, the probability that the consumer of 
another brand remains loyal to the competition, is 0.85. The stochastic matrix defined by these transition 
probabilities is 

p = [0.88 0.12] 
0.15 0.85 

The initial probability distribution vector is x<o> = [0.60, 0.40], where the components x\0> = 0.60 
and x~0> = 0.40 represent the proportions of people initially in states 1 and 2, respectively. 

19.2 Formulate the following process as a Markov chain. The training program for production 
supervisors at a particular company consists of two phases. Phase 1, which involves 3 weeks 
of classroom work, is followed by phase 2, which is a 3-week apprenticeship program under 
the direction of working supervisors. From past experience, the company expects only 60 
percent of those beginning classroom training to be graduated into the apprenticeship phase, 
with the remaining 40 percent dropped completely from the training program. Of those who 
make it to the apprenticeship phase, 70 percent are graduated as supervisors, 10 percent are 
asked to repeat the second phase, and 20 percent are dropped completely from the program. 
How many supervisors can the company expect fro·m its current training program if it has 45 people 
in the classroom phase and 21 people in the apprenticeship phase? 

We consider one time period to be 3 weeks and define states 1 through 4 as the conditions of being 
dropped, a classroom trainee, an apprentice, and a supervisor, respectively. If we assume that dis­
charged individuals never reenter the training program and that supervisors remain supervisors, then the 
transition probabilities are given by the stochastic matrix 

p- [0~4 ~ 0~6 ~ ] 
- 0.2 0 0.1 0.7 

0 0 0 1 

There are 45 + 21 = 66 people in the training program currently, so the initial probability vector is 

x<o> = [O, 45/66, 21!66, o] 
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p = [0.88 0.12] 
0.15 0.85 

regular? ergodic? Calculate L =limP", if it exists. 
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Since each entry of the first power of P (P itself) is positive, P is regular and, therefore, ergodic. 
Hence the limit exists. The left eigenvector corresponding to A = 1 is given by 

[ ][0.88 0.12] [ ] 
Xt, X2 0.15 0.85 = Xt, X2 or 

Adjoining the condition xz + x2 = 1 and solving, we obtain 

It follows that 

L = lim P" = [5/9 4/9] 
n-+oo 5/9 4/9 

19.4 Is the stochastic matrix 

p-[0 1] 
- 0.4 0.6 

regular? ergodic? Calculate L = limP", if it exists. 

Since each entry of 

,. ... .., 

p2 = [0.40 0.60] 
0.24 0.76 

is positive, P itself is regular and, therefore, ergodic; hence L exists. Solving 

[xz. x2][0~4 0~6] = [xz. x2] or 

together with Xz + X2 = 1, we find Ez = [2/7, 5/7] and 

19.5 Is the stochastic matrix 

L= [2/7 5/7] 
2/7 5/7 

[ 

1 0 
0.4 0 

P= 0.2 0 

0 0 

0 
0.6 
0.1 
0 

r~gular? ergodic? Calculate L = limP", if it exists. ,......, 

Rather than raise P to successively higher powers to ascertain whether it is regular, let us instead 
determine its eigenvalues by solving the characteristic equation: 

1-A 
0.4 
0.2 
0 

0 
-A 
0 
0 

0 
0.6 

0.1-A 
0 

0 
0 

0.7 
1-A 

= (1-A)(-A)(0.1-A)(1-A)=O 
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Thus, A1 == 1 (double root), A2 = 0.1, A3 = 0. By Theorem 19.4, Pis not regular. However, by Theorem 
19.2, Pis ergodic, since it possesses the two .linearly independent left eigenvectors 

[1, 0, 0, 0] and [0, 0, 0, 1] 

corresponding to A 1 = 1. As an easy calculation shows, the left eigenvectors 

[-2, 0, 9, -7] and [4, 5,-30, 21] 

respectively correspond to A2 and AJ. 
Theorem 19.3 now tells us that Pis diagonalizable, with 

M~[ ~ 
0 0 OJ n~[! 

0 0 

n 0 0 1 and 1 0 
-2 0 9 -7 0 0.1 

4 5 -30 21 0 0 

Calculating 

~· ~ [ .,\, 0 0 

3/i5] 7/15 10/15 
2/9 7/9 1/9 
() 1 0 

we obtain from (19.3) 

[ I 0 0 0][1 0 0 0][1 0 0 l[ &~5 0 0 

7/~5] L = 8/15 7/15 10/15 3/15 0 1 I) 0 0 0 0 0 0 
2/9 7/9 1/9 0 0 0 0 0 -2 0 9 -7 2/9 0 0 7/9 
0 1 0 0 0 0 0 0 4 5 -30 21 0 0 0 1 

Solve the problem formulated in Problem 19.1. 

(a) [
0 6477 0.3523] x<s> == x<o>ps == [0.60, 0.40] 0:

4404 0
.
5596 

== [0.5648, 0.4352) 

After 5 years, Hi-Glo's share of the market will have declined to 56.48 percent. 

(b) It follows from the results of Problem 19.3 that P is ergodic, with limit matrix L. Hence, 

x<~> = X<0>L = (0 60 0 40](519 419
] = (5/9 4/9] = E . , . 5/9 4/9 , 1 

Over the long run, Hi-Glo's share of the market will stabilize at 5/9, or approximately 55.56 per­
cent. 

19.7 Solve the problem formulated in Problem 19.1, if Hi-Glo currently controls 90 percent of the 
market. 

(a) x<s> = x<olp5 = [0.90, 0.10][~:~: ~:~~;~] = [0.6270, 0.3730] 

After 5 years, Hi-Glo will control approximately 63 percent of the market. 

(b) Since Pis regular, the limiting distribution remains the left eigenvector of P associated with A = 1, 

x<~> = E1 == [5/9, 4/9] 

19.8 Solve the problem formulated in Problem 19.2. 

Using (19.2) and the results of Problems 19.2 and 19.5, we have 

x<~> == :x<0>L = (0 45/66 21/66 0] [8 '~ 5 
' ' ' 2/9 

0 

~ ~ 7/~5] = [0.4343, 0, 0, 0.5657] 
0 0 7/9 
0 0 I 
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Therefore, eventually, 43.43 percent of those currently in training (or about 29 people) will be dropped 
from the program, and 56.57 percent (or about 37 people) will become supervisors. 

19.9 Solve the problem formulated in Problem 19.2, if all 66 people are currently in the classroom 
phase of the training program. 

Now :x<o> = [0, 1, 0, 0], and so 

x<""l = :x<0>L = (0 1 0 0] [ 8/15 
, , , 2/9 

0 

0 0 0 ] 0 0 7115 = [8/15 0 0 7/15] 0 0 7/9 , , , 

0 0 1 

Therefore, 8/15 of the 66 people in training (or about 35 people) will ultimately be dropped from the 
program, with the remaining 31 people eventually becoming supervisors. Comparing this result with the 
result of Problem 19.8, we see that the limiting distributions are influenced by the initial distributions, the 
usual situation whenever a stochastic matrix is ergodic but not regular. 

19.10 Construct the state-transition diagram for the Markov chain of Problem 19.2. 

A state-transition diagram is an oriented network (see Chapter 15) in which the nodes represent 
states and the arcs represent possible transitions. Labeling the states as in Problem 19.2, we have the 
state-transition diagram shown in Fig. 19-1. The number on each arc is the probability of the transition. 

0.4 0.6 0.7 

Fig.l9-l 

19.11 A sewing machine operator works solely on one phase of the production process for a particular 
design of clothing. This phase requires exactly half an hour per garment to complete. Every 
30 min a messenger arrives at the operator's table to collect all garments the operator has com­
pleted and to deliver new garments for the operator to sew. The number of new garments that 
the messenger carries is uncertain: 30 percent of the time the messenger has no garments for the 
operator; 50 percent of the time the messenger has only one garment to leave; 20 percent of the time 
the messenger has two garments for the operator. However, the messenger is instructed never to 
leave the operator with more than three unfinished garments altogether. (Unfinished garments 
that cannot be left with the operator, as a result of this policy, are taken to another operator for 
processing.) Determine the percentage of time that the operator is idle, assuming that any 
unfinished garments on the operator's table at the end of a work shift remain there for processing by 
the operator on the next business day. 

We can model this process as a three-state Markov chain by letting the states be the number of 
unfinished garments on the operator's table just before the messenger arrives. We designate the states as 
1, 2, and 3, respectively, representing 0, 1, and 2 unfinished garments; the stages are the half-hour 
interarrival intervals. 

If the operator has one unfinished garment at the beginning of a stage (just before the messenger 
arrives) and if the messenger leaves one garment (with probability 0.5), then one garment will be 
completed by the beginning of the next stage, leaving the operator again with one unfinished garment; 
hence, p22 = 0.5. If the operator has two unfinished garments at the beginning of a stage and if the 
messenger arrives with either 1 or 2 new garments (with probability 0.5 + 0.2 = 0. 7), then the messenger 
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will leave only one garment, and at the beginning of the next period the operator will have two un­

finished garments remaining, since one will have been processed during the period. Therefore, PJJ = 0.7. 

Considering all other possibilities in the same fashion, we generate the stochastic matrix 

[ 

0.8 0.2 0 ] 
p = 0.3 0.5 0.2 

0 0.3 0.7 

All the elements of P2 are positive, soP is regular. The left eigenvector associated with A1 = 1 and 

having component-sum unity is found to be 

E. [9 6 4] 
•I = 19' 19' 19 

Since P is regular, this vector is also x<"">. Over the long run, the operator starts a stage in state 1 (no 

unfinished garments remaining) 9/19 of the time. The messenger then arrives and, with probability 0.3, 

leaves no new garments for processing, thereby rendering the operator idle. Thus the operator is idle 

() i9 (0.3) = 0.1421 

or approximately 14 percent of the time. 

19.12 Verify that, for the stochastic matrix defined in Example 19.1, p\Jl represents the probability of 

moving from state i to state j in two time periods. 

There are two ways for a stable household to remain stable after 20 years, as shown in Fig. 19-2(a): 

either it remains stable throughout the first 10 years and throughout the second 10 years or it becomes 

depressed after 10 years and then reverts to stability after another 10 years. The probability that a stable 

household will remain stable over one time period is 0.92; hence the probability that it will remain stable 

over two time periods is (0.92)(0.92). The probability that a stable household will become depressed in 10 

years is 0.08, and the probability that a depressed household will become stable over the next 10 years is 

0.03; so the probability of both events happening to the same household is (0.08)(0.03). Thus, the 

probability that a stable household will be stable after two time periods is 

(0.92)(0.92) + (0.08)(0.03) 

which is exactly the (1, I)-element of P2
. 

Stable 

().03 

Depressed 

After 10 years After 20 years 

.---• Stable -------=:
0

·:::.:
92=---------> Stable 

.. Depressed ------'-
0

'c:.:
03=----------> Stable 

(a) 

0.92 
___,Stable -------------+ Stable 

Depressed 

(b) 

Fig. 19-2 

O.D3 ----------+ Stable 
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Figure 19-2(b) depicts the ways a depressed household can become stable over two time periods. 
The probability that it becomes stable over the first time period and then remains stable over the next 
time period is (0.03)(0.92). The probability that it remains depressed over the first time period and then 
becomes stable over the next time period is (0.97)(0.03). Thus, the probability that either one of these 
two situations occurs is 

(0.03)(0.92) + (0.97)(0.03) 

which is exactly the (2, I)-element of P 2. The other two cases are handled similarly. 

19.13 Prove that if Pis regular, then all the rows of L =limP" are identical. 
n-+"" 

Given L =limP", it is also true that L =lim P"-1
• Consequently, 

n~oo n~oo 

L = lim P" = lim (P"-'P) = (lim P"-')P = LP 
n-+oo n-+oo n-+oo 

which implies that every row of L is a left eigenvector of P corresponding to A = 1. 
Now, P being regular, all such eigenvectors are scalar multiples of a single vector. On the other 

hand, L being stochastic, each of its rows sums to unity. It follows that all rows are identical. 

19.14 Prove that if A is an eigenvalue of a stochastic matrix P, then lA I sl. 

Let E = [et, e2, . .. , eN ]T be a right eigenvector belonging to A. Then PE = AE, and considering 
the jth component of both sides of this equality, we conclude that 

N 

L Pikek =Aei 
k~l 

Let e1 be that component of E having the greatest magnitude; i.e., 

le1l =max {lell, le2l, ... , leN I} 

By definition, E ~ 0, so that le1l > 0. It follows from (1), with j set equal to i, and (2) that 

lA lied = IAe1l = I ~ P1kek I :S ~ P1k lek I :S le;l ~ P1k = led 
k-1 k-1 k~l 

and the result lA I :S 1 follows immediately. 

Supplementary Problems 

(1) 

(2) 

In Problems 19.15 through 19.21, determine whether the given matrices are stochastic. If so, determine 
whether they are regular or ergodic, or neither. Calculate their limiting values, if these exist. 

[o~1 0~9] [ 0~5 0 

·~] [ 0.~1 
0 .t] 19.15 19.18 0.3 19.21 0.79 

0 0.17 0.35 

["' 0.3 "f] u 0 0 

•:s] 0.5 0 
19.16 0.5 0.5 19.19 

0 1 
0 0 0.3 0 0.7 

[i 0 J] ["' 0.8 OJ] 
19.17 -1 19.20 0.9 0 0.1 

0 0.2 0.2 0.6 
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19.22 Find the proportion of households that ultimately are classified as economically stable, if the data in 
Example 19.1 remain valid over the long run. 

19.23 A recently completed survey of subscribers to a travel magazine shows that 65 percent of them have at 
least one airline credit card. When compared with a similar survey taken 5 years ago, the data indicate 
that 40 percent of those individuals who did not have an airline credit card subsequently obtained one, 
while 10 percent of those who carried such cards 5 years ago no longer do so. Assuming that these 
trends continue into the future, determine the proportion of subscribers who will own airline credit cards 
(a) in 10 years, and (b) over the long run. 

19.24 An airline with a 7:15A.M. commuter flight between New York City and Washington, D.C., does not 
want the flight to depart late 2 days in a row If the flight leaves late one day, the airline makes a 
special effort the next day to have the flight leave on time, and succeeds 90 percent of the time. If the 
flight was not late in leaving the previous day, the airline makes no special arrangements, and the flight 
departs as scheduled 60 percent of the time. What percentage of the time is the flight late in departing? 

19.25 Grapes in the Sonoma Valley are classified as either superior, average, or poor. Following a superior 
harvest, the probabilities of having a superior, average, and poor harvest the next year are 0, 0.8, and 0.2, 
respectively. Following an average harvest, the probabilities of a superior, average, and poor harvest 
are 0.2, 0.6, and 0.2. Following a poor harvest, the probabilities of a superior, average, and poor 
harvest are 0.1, 0.8, and 0.1. Determine the probabilities of a superior harvest for each of the next 5 
years, if the most recent harvest was average. 

19.26 The geriatric ward of a hospital lists its patients as bedridden or ambulatory. Historical data indicate 
that over a 1-week period, 30 percent of all ambulatory patients are discharged, 40 percent remain 
ambulatory, and 30 percent are remanded to complete bed rest. During the same period, 50 percent of 
all bedridden patients become ambulatory, 20 percent remain bedridden, and 30 percent die. Currently 
the hospital has 100 patients in its geriatric ward, with 30 bedridden and 70 ambulatory. Determine the 
status of these patients (a) after 2 weeks, and (b) over the long run. (The status of a discharged patient 
does not change if the patient dies.) 

19.27 The owners of a large block of rental apartments in Chicago is considering as its operating agent a real 
estate management firm with an excellent record in Boston. Based on ratings of good, average, and 
poor for the condition of buildings in Boston under the firm's control, it has been documented that 50 
percent of all buildings that begin a year in good condition remain in good condition at the end of the 
year, with the other 50 percent deteriorating to average condition. Of all buildings that begin a year in 
average condition, 30 percent remain in average condition at the end of the year and 70 percent are upgraded 
to good condition. Of all buildings that begin a year in poor condition, 90 percent remain in poor condition 
after 1 year, while the other 10 percent are upgraded to good condition. Assuming that these trends will 
prevail for Chicago also if the firm is hired, determine the condition of apartments under the firm's 
management that can be expected over the long run. 

19.28 A state in a Markov chain is absorbing if no objects can leave the state once they enter it. Find all 
absorbing states for the Markov chains defined by the matrices given in (a) Problem 19.15, (b) Problem 
19.18, (c) Problem 19.19, and (d) Problem 19.21. 

19.29 Prove that the stochastic matrix for a Markov chain that has at least one absorbing state cannot be 
regular. 

19.30 From the definition of matrix multiplication, verify that the product of two stochastic matrices of the 
same order is itself stochastic. 



CHAP. 19] FINITE MARKOV CHAINS 233 

19.31 Show that U = [1, 1, 1, ... , 1] is a left eigenvector of Pr, the transpose of an arbitrary stochastic matrix 
P. 

19.32 Using the result of Problem 19.31, prove that every stochastic matrix P has A = 1 as an eigenvalue. 

19.33 Prove Theorem 19.3. 

19.34 Show by example that the converse to Theorem 19.4 is not valid. 



Chapter 20 
Unbounded Horizons 

OPTIMAL POLICIES UNDER STATIONARITY 

A decision process with an unbounded horizon is one that has infinitely many stages. Although 
such situations rarely occur in practice, they are convenient models for analyzing processes that have 
no obvious terminal point. The following condition is generally assumed for such processes. 

Assumption of stationarity. The decisions, returns, and states associated with the process are the 
same in every stage. 

For processes that conform to this assumption, optimal policies depend only on the states and not 
on the stages. Whatever decision is optimal for state u in stage 1 will also be optimal for state u in 
stage 100, since all the underlying conditions remain invariant. We shall use the notation d*(u) to 
indicate the decision that is optimal whenever the process is in state u. 

The stationarity assumption is restrictive in that it does not allow interest rates, costs, charges, or 
any other quantity to change as the process continues into the future. An optimal policy, therefore, 
remains optimal only so long as the stationarity assumption remains valid. 

DISCOUNTING 

Since monies spent or received in the (distant) future are not equal in value to funds of the same 
denomination spent or received in the present, discounting is often used to offset time differences 
[see (14.5)]. We denote the present value of the optimal return (or optimal expected return, in the 
case of a stochastic process) with an unbounded horizon for a decision process beginning in state u by 
m(u). An equation for m(u) is called a functional equation for the process. 

DETERMINISTIC PROCESSES WITH DISCOUNTING 

The functional equation for deterministic processes is most easily found by deriving the recur­
rence formula for the process, using a dynamic programming approach with discounting over a finite 
number of stages, and then suppressing all subscripts that refer to the stages. 

Example 20.1 From (1) of Problem 14.10 we obtain 

m(u) =max {J(u)- M(u) + am(u + 1), /(0)- M(O)- R(u) + am(l)} 

as the functional equation for the equipment replacement process with an unbounded horizon. 

The following five-step algorithm is used to solve functional equations for m ( u) and to determine 
the optimal policy. 

STEP 1 Arbitrarily choose an initial policy and denote the decision for each state u by d(u ). 
Designate this policy as the current one. 

STEP 2 Under the current policy, calculate, for each value of u, the total discounted return from 
the process beginning in state u. Designate the calculated values as the function PV(u ). 

STEP 3 Replace the m-function by the PV-function in the right-hand side of the functional equa­
tion, thereby obtaining m(u), the left-hand side of the new equation, and d(u), the decision 
yielding m (u ). 

234 
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STEP4 If d(u)= d(u) for each state u, the current policy is optimal; i.e. d*(u)= d(u) and 
m(u) = m(u) = PV(u). If not, go to Step 5. 

STEP 5 Set d(u)= d(u) for each state u, thereby establishing an updated current policy, and 
return to Step 2. 

(See Problem 20.3.) 

MARKOV CHAINS WITH DISCOUNTING 

Some decision processes can be modeled as Markov chains once a policy has been established. 
In such cases, the transition probabilities generally depend on both the states and the policy. (See 
Problems 20.5 and 20.6.) Set 

d; = a feasible decision when the process is in state i (i = 1, 2, ... , N) 

C(i, d;) =the (expected) cost or gain from implementing decision d;, the process being in state i 
P;i(d;) =the transition probability of moving from state i to state j if decision d; is implemented 

in state i 

The cost C(i, d;)is incurred each time the process finds itself in state i and d; is implemented. Forgiven i 
and dj, this cost may, or may not, be a random variable. If it is, we understand C(i, d;) to denote the 
expected value of the random variable. 

The functional equation for an N-state Markov chain with discount factor a is 
N 

m (i) = opti~mm{ C(i, d;) +a t1 P;i(dj)m (j)} (20.1) 

The optimization is over all decisions d; possible when the process is in state i. Equation (20.1) can be 
solved for m (i) by the same algorithm given for deterministic processes with discounting, with one 
modification. The (expected) present values PV(i) required in Step 2 cannot be calculated In­

dependently for each state i but are obtained by solving the simultaneous set of equations 
N 

PV(i) = C(i, d;) +a~ P;i(d;)PV(j) (i = 1, 2, ... , N) (20.2) 
j=l 

Here dj is the decision associated with state i under the current policy. The form of (20.2) is, of 
course, the basis for the form of (20.1). 

It should be mentioned that present values for deterministic processes, too, may be calculated 
from equations similar to (20.2). These equations may be obtained formally by writing PV(u) 
instead of m (u) in the functional equation and optimizing over the single value d; = d;. (See 
Problem 20.4.) 

EXPECTED RETURN PER PERIOD 

In situations where the stationarity assumption is known to hold for a short but still uncertain 
length of time--or where the discount factor is close to 1, thereby resulting in exceedingly large 
present values for an unbounded horizon-expected return (either gain or cost) per period (stage) 
may be a more appropriate measure than present value for determining optimal policies. 

We assume that the process in question can be modeled by a Markov chain whenever a policy is 
established, and that the limiting state distribution, 

X("')= [x<""l x<""l x<""l] 
I ' 2 '. • ·' N 

is independent of the initial state distribution, x<o>. This latter condition is satisfied not only if the 
transition matrix P is regular, but also for a large class of nonregular ergodic matrices, those which 
have the rows of L = limP" identical to one another. 

n-+oo 
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Definition: The expected return per period is 

R = C(1, d1)x~"") + C(2, dz)x~"") + · · · + C(N, dN )xt) 

where C(i, d;) is the expected cost or gain from implementing decision d; while the 
process is in state i (i = 1, 2, ... , N). 

The expected return per period depends on the policy in effect. A policy is optimal if it results in 
the optimal value for R. (See Problem 20.7.) 

Since R involves the components of x<""), it represents the average return per period with the 
process in its steady-state pattern. Furthermore .. since x<"") is assumed independent of x<o), R too is 
independent of the initial state of the process. The initial state does, however, influence the early 
history of the process. Denote the expected (undiscounted) worth of the process over n periods 
beginning in state i by Wn (i). Then W; = Wn (i)- nR represents the discrepancy over n periods 
between the expected total return given that the process began in state i and the expected total 
return had steady-state conditions initially prevailed. Since steady-state conditions will prevail 
eventually, regardless of the initial state, W; must converge to a fixed number as n increases. (See 
Problem 20.10.) Consequently, W; is effectively a constant for large values of n. 

The values of w; for each state i and large n can be used to generate the following six-step 
algorithm for determining optimal policies. 

STEP 1 Arbitrarily choose an initial policy and denote the decision for each state i by d;. Desig­
nate this policy as the current one. 

STEP 2 Determine the transition matrix P = [p;i(d;)] corresponding to the current policy, and the 
returns C(i, d;) associated with the decisions. 

STEP 3 Solve the following set of equations for R and w; (i = 2, 3, ... , N), with w1 taken as zero: 
'V 

W; + R = C(i, d;) + L Pii(d;)Wj 
j=l 

(i = 1, 2, ... , N) 

STEP 4 For each state i (i = 1, 2, ... , N), determine decision d; that yields the 
N 

optirum { C(i, d;) + ~ p;i(d;)wi} 

where the optimum is taken over all decisions d; possible in that state. 

(20.3) 

(20.4) 

STEP 5 If d; = d; for all i, then the current policy is optimal, with R = R * given in Step 3. If not, 
go to Step 6. 

STEP 6 Set d; = d; for each i, thereby establishing an updated current policy, and return to Step 2. 

(See Problems 20.8 through 20.12.) 

Solved Problems 

20.1 Determine PV(u) for each state u, with an unbounded horizon, for the equipment replace­
ment process of Problems 14.8 and 14.10, under the following policy: 

State, u I 2 3 4 5 6 

Decision, d(u) BUY BLY BUY BUY BUY BUY 
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Take the effective interest rate to be 10 percent per annum and the cost of replacing a 6-year-old 
machine to be R(6) = $7000. 

The state u at any stage ranges from 1 to 6, since, with an unbounded horizon, it is possible to enter 
a stage with a 6-year-old machine (which, however, must then be immediately replaced). The discount 
factor is 

1 
a= 1 + 0.10 = 0.909091 

To calculate PV(1), note that, when the process begins with a 1-year-old machine, the current policy 
requires that the machine be replaced, at a cost of $3500 (see Table 14-12). A new machine is installed 
which generates an income of $10 000 and a maintenance cost of $100. The net revenue for the year is 

10 000 - 100 - 3500 = $6400 

One then enters the second year of the process with a 1-year-old machine which, according to the current 
policy, must also be replaced. The net revenue for the second year is also $6400, but since it is realized 
1 year later it must be discounted by a. The net revenue for every year thereafter continues to be 
$6400, but each amount must be discounted appropriately to yield its present value. As a result, the 
present value of the total revenue from the process beginning with a 1-year-old machine is 

6400 
PV(1) = 6400 + 6400a + 6400a 2 + 6400a 3 + · · · = -

1 
- = $70 400 -a 

To calculate PV(2), the present value of the total revenue beginning with a 2-year-old machine, note 
that the current policy requires that the 2-year-old machine be replaced immediately with a new model. 
The replacement cost is $4200. A new machine, once installed, generates an income of $10 000 and a 
maintenance cost of $100. The net revenue for the first year is 

10 000 - 100 - 4200 = $5700 

From the second year on, the financial conditions are identical to those considered in determining 
PV(l). Thus, 

PV(2) = 5700 + 6400a + 6400a 2 + 6400a 3 + · · · = 5700 + ~0: = $69 700 

Similarly, 

PV(3) = (10 000- 100- 4900) + 6400a + 6400a 2 + 6400a 3 + · · · = 5000 + ~O: = $69 000 

PV(4) = (10 000- 100- 5800) + 6400a + 6400a 2 + 6400a 3 + · · · = 4100 + 61~
0: = $68 100 

PV(5) = (10 000- 100- 5900) + 6400a + 6400a 2 + 6400a 3 + · · · = 4000 + 6
1
400

a = $68 000 
-a 

PV(6) = (10 000- 100 -7000) + 6400a + 6400a 2 + 6400a 3 + · · · = 2900 + 61~
0: = $66 900 

20.2 Rework Problem 20.1 if the current policy is 

State, u I 2 3 4 5 6 

Decision, d(u) KEEP KEEP BUY BUY BUY BUY 

To calculate PV(l), the total discounted revenue beginning with a 1-year-old machine, note that the 
current policy requires that the 1-year-old machine be kept. From Table 14-12, such a machine will 
generate a yearly income of $9500 and a maintenance cost of $400, for a net revenue of $9100. The 
machine becomes 2 years old at the beginning of the second stage, and again the current policy calls for 
it to be kept. A 2-year-old machine generates a net revenue of 
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9201) - 800 = $8400 

but since this occurs in the second stage of the process, the amount must be discounted by a. The 
company then enters stage 3 with a 3-year-old machine which, according to the current policy, must be 
replaced. The replacement cost is $4900. A new machine, once installed, generates an income of 
$10 000 and a maintenance cost of $100; hence net revenue for the third stage is 

10 000 - 100 - 4900 = $5000 

which must be discounted by a 2
• The company then enters stage 4 with a 1-year-old machine which, 

according to the current policy, must be kept. Therefore, 

PV(1) = 9100 + 8400a + 5000a 2 + 9100a' + 8400a 4 + 5000a 5 + · · · 

= (9100 + 8400a + 5000a 2)(1 + a 3 + a 6 + · · ·) = 9100 + 8400a + 5000a
2 

= $83 916 
1-a 

To calculate PV(2), the total discounted revenue beginning the process with a 2-year-old machine, 
note that the current policy requires the 2-year·old machine to be kept. Such a machine will generate a 
net revenue of 

9200- 800 = $8400 

The machine enters stage 2 of the process as a 3-year-old model, and the current policy calls for it to be 
replaced. The replacement cost is $4900, which, when coupled with the income and maintenance cost 
generated by the new replacement, yields a net yearly revenue of 

10 000 - 100 - 4900 = $5000 

Since this amount is received in the second stage of the process, it must be discounted by a. The 
company enters the third stage with a 1-year-old machine. The situation is now identical to that which 
produced PV(1), but it occurs two stages later. Consequently, 

Similarly, 

PV(2) = 8400 + 5000a + a 2 PV(1) = $82 298 

PV(3) = (10 000-- 100- 4900) +a PV(1) = $81 287 

PV(4) = (10 000 -- 100- 5800) + a PV(1) = $80 387 

PV(5) = (10 000 -- 100- 5900) +a PV(1) = $80 287 

PV(6) = (10 000 -- 100- 7000) +a PV(1) = $79 187 

20.3 Solve Problem 14.10 with an unbounded horizon. 

The functional equation for this process was determined in Example 20.1 to be 

m(u) =max {I(u)- M(u)-+- am(u + 1), I(O)- M(O)- R(u)+ am(1)} 

To guarantee that 6-year-old machines are sold under the optimal policy, we set 1(6) = 0, M(6) = 109
, 

and PV(7) = 0. Using the data of Problems 14.8 and 20.1, we solve (1) by the five-step algorithm. 

STEP 1 We arbitrarily choose as the initial policy 

u I 2 3 4 

d(u) BUY BUY BUY BUY 

STEP 2 Using the results of Problem 20.1, we have for this policy 

PV(1) = $70 400 

PV(4) = $68 100 

PV(2) = $69 700 

PV(5) = $68 000 

5 6 

BUY BUY 

PV(3) = $69 000 

PV(6) = $66900 

STEP 3 Replacing m(u) with PV(u) in the right-hand side of (1), we obtain 
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m(1) =max {1(1)- M(1)+ a PV(2), 1(0)- M(O)- R(1) +a PV(1)} 

=max {9500- 400 + (0.909091)(69 700), 10 000- 100-3500 + (0.909091)(70 400)} 

=max {72 464, 70 400} = $72 464 with d(1) =KEEP 

ri'l(2) =max {1(2)- M(2) +a PV(3), I(O)- M(O)- R(2) +a PV(l)} 

= max {9200- 800 + (0.909091)(69 000), 10 000- 100- 4200 + (0.909091)(70 400)} 

= max {71127, 69 700} = $71127 with d (2) = KEEP 

m (3) = max {68 409, 69 000} = $69 000 

m (4) = max {66 318, 68 100} = $68 100 

m(5) =max {63 618,68 000} = $68 000 

m (6) =max {-109
, 66 900} = $66 900 

with d(3) =BUY 

with d(4) =BUY 

with d(5) =BUY 

with d(6) = BUY 

Collecting these results into a table we have 

u 1 2 3 4 5 6 

d(u) KEEP KEEP BUY BUY BUY BUY 
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STEPS 4 AND 5 Since this new policy differs from the current one, we take the new policy as the up­
dated current policy and return to Step 2. 

STEP 2 Using the results of Problem 20.2, we have for the updated current policy 

STEPJ 

PV(1) = $83 916 

PV(4) = $80 387 

PV(2) = $82 298 

PV(5) = $80 287 

PV(3) = $81 287 

PV(6) = $79 187 

m(l) =max {/(1)- M(l) +a PV(2), /(0)- M(O)- R(1) +a PV(1)} 

=max {83 916, 82 687} = $83 916 

m(2) =max {82 297, 81987} = $82 297 

m (3) = max {79 579, 81 287} = $81 287 

m (4) = max {77 488, 80 387} = $80 387 

m (5) = max {74 788, 80 287} = $80 287 

m (6) =max {-109
, 79 187} = $79 187 

Collecting these results into a table, we have 

u 1 2 3 

d(u) KEEP KEEP BUY 

with d(1) =KEEP 

with d(2)= KEEP 

with d(3)= BUY 

with d(4) =BUY 

with d(5) =BUY 

with d(6) =BUY 

4 5 6 

BUY BUY BUY 

STEP 4 Since this new policy is identical to the current policy, it is the optimal one. One- and 
two-year-old machines should be kept; older machines should be replaced by new models. 
As the process starts with a 2-year-old machine, the company's total discounted profit under 
an optimal policy is m(2) = PV(2) = $82 297 (to within roundoff error). 

20.4 Use the functional-equation approach to recalculate the present values found in Problem 20.2. 

The procedure is to replace m(u) by PV(u) in both sides of the functional equation and then, for 
each state, to optimize over the single decision dictated by the current policy. The functional equation 
for this problem is given in Example 20.1 as 
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m(u) = max{I(u)- M(u)+ am(u + 1), /(0)- M(O)- R(u)+ am(1)} (1) 

and the policy under consideration is 

u 1 2 3 4 5 6 

d(u) KEEP KEEP BUY BUY BUY BUY 

Maximizing over a KEEP decision means choosing the first of the two terms in (1); maximizing over BUY 

means choosing the second term. Thus, the current policy yields the set of equations: 

PV(1) = /(1) -· M(1) +a PV(2) 

PV(2) = /(2) -· M(2) +a PV(3) 

PV(3) = /(0) -· M(O)- R(3) +a PV(1) 

PV(4) = I(O)-· M(O)- R(4) +a PV(1) 

PV(5) = I(O)-· M(O)- R(5)+ a PV(l) 

PV(6) = I(O) -· M(O)- R(6) +a PV(l) 

(2) 

The last four equations of (2) are identical to the equations used to determine PV(3), ... , PV(6) in 
Problem 20.2. Combining the second and third equations of (2), we obtain 

PV(2) = /(2)- M(2) + a[I(O)- M(O)- R(3)] + a 2 PV(1) (3) 

which is identical to the equation for PV(2) in Problem 20.2. Finally, combining the first equation of (2) 
with (3), we get 

PV(1) = I(l)- M(l) + a[/(2)- M(2)] ~ a 2[I(O)- M(O)- R(3)] 
1-a 

which is exactly the expression for PV(1) found in Problem 20.2. 

20.5 Solve Problem 18.4 with discounting and an unbounded horizon, if the effective interest rate is 
8 percent per annum. 

Given a production policy, this problem can be modeled as a Markov chain. As determined in 
Problem 18.4, the states for each stage are the possible inventories at the beginning of a year-namely, 
-2, -I, 0, or 1 space shuttles-with negative inventory representing unfulfilled orders fro111 the previous 
year. The possible decisions are the production levels for new shuttles. These levels are limited to 2, 
for state -2; 1 or 2, for state -1; 0, I, or 2, for state 0; 0 or 1, for state I. The transition probabilities 
and costs (in millions of dollars) associated with each state and each decision are listed in Table 20-1. 
For instance, to determine line 3 of the table, the line corresponding to an inventory of -1 shuttles 
and the decision to produce two shuttles during the current year, note that once the back order of one 
shuttle has been fulfilled there will remain one shuttle to satisfy new demand. If this demand is one 
(which will occur with probability 0.6), then the state at the beginning of the next period will be 0; hence, 
p- 1.o(2) = 0.6. If the new demand is for two shuttles (which will occur with probability 0.4), then the 
state at the beginning of the next period will be -1; hence P-•.-•(2) = 0.4. Since no other states can 
be reached from state -1 with a decision to produce 2 shuttles, all other transition probabilities are 
0. An initial state of -1 signifies that one shuttle was not delivered as needed the previous year, and so 
a penalty cost of 1.5 million dollars is assessed. This cost, coupled with a production cost of 19 million 
dollars for manufacturing two new shuttles, results in a yearly cost of 20.5 million dollars. Observe that 
the yearly cost is strictly determined by the state and decision; it is independent of the random demand. 

For i = 0.08, the discount factor is 

1 
a= 1+!1.08 = 0.92592593 

The functional equation is (20.1), where the optimization is a minimization and where i and j range over 
-2, ... , 1 (not over 1, ... , 4). We solve for the optimal policy using the five-step algorithm. 
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Table 20·1 

State, Decision, Transition Probabilities, Penalty Production Storage Yearly Cost, 
i d; p;j(d;) Cost Cost Cost C(i, d;) 

j=-2 j = -1 j=O j = 1 

1 -2 2 0.4 0.6 0 0 3.0 19 0 22 

2 -1 1 0.4 0.6 0 0 1.5 10 0 11.5 
3 -1 2 0 0.4 0.6 0 1.5 19 0 20.5 

4 0 0 0.4 0.6 0 0 0 0 0 0 
5 0 1 0 0.4 0.6 0 0 10 0 10 
6 0 2 0 0 0.4 0.6 0 19 0 19 

7 1 0 0 0.4 0.6 0 0 0 1.1 1.1 
8 1 1 0 0 0.4 0.6 0 10 1.1 11.1 

STEP 1 We arbitrarily choose as an initial policy 

i -2 -1 0 1 

d; 2 2 2 0 

STEP 2 For the data in lines 1, 3, 6, and 7 of Table 20-1, the data corresponding to the current policy, 
(20.2) gives 

PV(-2) = 22 + (0.92592593)[(0.4)PV(-2) + (0.6)PV(-1) + (O)PV(O) + (O)PV(1)] 

PV(-1) = 20.5 + (0.92592593)[ (O)PV(-2) + (0.4)PV(-1) + (0.6)PV(O) + (O)PV(l)] 

PV(O)= 19 +(0.92592593)[ (O)PV(-2)+ (O)PV(-1)+(0.4)PV(0)+(0.6)PV(1)] 

PV(l) = 1.1 + (0.92592593)[ (O)PV(-2) + (0.4)PV(-1) + (0.6)PV(O) + (O)PV(1)] 

which is equivalent to the system 

(0.62962963)PV( -2)- (0.55555556)PV( -1) = 22 

(0.62962963)PV(-1)- (0.55555556)PV(O) = 20.5 

(0.62962963)PV(O)- (0.55555556)PV(1) = 19 

- (0.37037037)PV(-1)- (0.55555556)PV(O) + PV(l) = 1.1 

Solving, 

PV(-2) = 210.57768 PV(-1) = 199.05471 PV(O) = 188.69533 PV(1) = 179.65471 

STEP 3 Using these present values and the data from Table 20-1, we carry out the calculations ex­
hibited in Table 20-2. For each state i, the smallest calculated value is m(i). Thus, the new policy 
is 

-1 0 

2 0 

STEPS 4 AND 5 Since this new policy differs from the previous one, we designate this new policy as 
the current one and return to Step 2. 

STEP 2 For the data in lines 1, 3, 5, and 7 of Table 20-1, the data corresponding to the latest policy, 
(20.2) gives 
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Table 20-2 

Expected Discounted Cost, 
I 

Decision, C(i, J,) +a l: P;i(J.)PV(j) J, 
j~-2 

2 22 + (0.92592593)[(0.4)(210.57768) + (0.6)(199.05471) 
+ (0)(188.69533) + (0)(179.65471)] = 210.578 

1 11.5 + (0.92592593)[(0.4)(210.57768) + (0.6)(199.05471) 
+ (0)(188.69533) + (0)(179.65471 )] = 200.D78 

2 20.5 + (0.9259259:1)[(0)(210.57768) + (0.4)(199.05471) 
+ (0.6)(188.69533) + (0)(179.65471)] = 199.055 

0 0 + (0.92592593)[(0.4)(210.57768) + (0.6)(199.05471) 
+ (0)(188.69533) + (0)(179.65471 )] = 188.578 

1 10 + (0.92592593)1(0)(210.57768) + (0.4)(199.05471) 
+ (0.6)(188.69533) + (0)(179.65471)] = 188.555 

2 19 + (0.92592593)1(0)(210.57768) + (0)(199.05471) 
+ (0.4)(188.69533) + (0.6)(179.65471)] = 188.695 

0 1.1 + (0.92592593)[(0)(210.57768) + (0.4)(199.05471) 
+ (0.6)(188.69533) + (0)(179.65471)] = 179.655 

1 11.1 + (0.92592593)[(0)(210.57768) + (0)(199.05471) 
+ (0.4)(188.69533) + (0.6)(179.65471)] = 180.795 

PV(-2) = 22 + (0.92592593)[(0.4)PV(-2) + (0.6)PV(-1) + (O)PV(O) + (O)PV(l)] 

PV(-1) = 20.5 + (0.92592593)[ (O)PV(-2) + (0.4)PV(-1) + (0.6)PV(O) + (O)PV(l)] 

PV(O) = 10 + (0.92592593)[ (O)PV(-2) + (0.4)PV(-1) + (0.6)PV(O) + (O)PV(l)] 

PV(l) = 1.1 + (0.92592593)[ (O)PV(-2)+ (0.4)PV(-1)+ (0.6)PV(O)+ (O)PV(l)] 

which is equivalent to the system 

(0.62962963)PV(-2)- (0.55555556)PV(-1) = 22 

(0.62962963)PV(-1)- (0.55555556)PV(O) = 20.5 

- (0.37037037)PV(-1) + (0.44444444)PV(O) = 10 

- (0.37037037)PV(-1)- (0.55555556)PV(O) + PV(l) = 1.1 

Solving, 

PV(-2) = 209.64706 PV(-1)= 198 PV(O) = 187.5 PV(1) = 178.6 

Table 20-3 

Expected Discounted Cost, 

Decision, I 

d, C(i, d;) +a ~ Pii(d;)PV(j) 
i•-2 

2 22 + (0.92592593)[(0.4)(209.64706) + (0.6)(198) + (0)(187.5) + (0)(178.6)] = 209.647 

1 11.5 + (0.92592593)[(0.4)(209.64706)+ (0.6)(198)+ (0)(187.5) + (0)(178.6)] = 199.147 

2 20.5 + (0.92592593)[(0)(209.64706) + (0.4)(198) + (0.6)(187 .5)+ (0)(178.6)] = 198.000 

0 0 + (0.92592593)[(0.4)(209.64706)+ (0.6)(198)+ (0)(187.5) + (0)(178.6)] = 187.647 
1 10 + (0.92592593)[(0)(209.64706) + (0.4)(198) + (0.6)(187 .5) + (0)(178.6)] = 187.500 
2 19 + (0.92592593)[(0)(209.64706) + (0)(198) + (0.4)(187.5)+ (0.6)(178.6)] = 187.667 

0 1.1 + (0.92592593)[(0)(209.64706) + (0.4)(198) + (0.6)(187 .5) + (0)(178.6)] = 178.600 
1 11.1 + (0.92592593)[(0)(209.64706) + (0)(198) + (0.4)(187.5)+ (0.6)(178.6)} = 179.767 
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STEP 3 Using these present values and the data from Table 20-1, we carry out the calculations shown 
in Table 20-3. The new policy is seen to be 

-1 0 

2 0 

STEP 4 Since this new policy is identical to the current policy, it is the optimal one. Under this policy 
and starting with zero inventory, the shuttle manufacturer's expected discounted cost is 

m(O) = PV(O) = 187.5 million dollars 

20.6 A farmer raises corn for sale on the open market and for feed for the farm's own livestock. 
The corn yield is variable from year to year, being governed by the following probability 
distribution: 

Yield, units 10 11 12 13 14 

Probability 0.10 0.20 0.30 0.25 0.15 

The farmer requires 10 units of corn over the winter for the farm's livestock and has facilities 
to store as much as 12 units. Any corn stored but not used as feed during the winter can be 
re-stored or sold the following fall. 

Each winter a feed distributor is willing to pay a premium price for the farmer's corn 
according to the rate scale below, if the farmer guarantees delivery after the following fall's 
harvest: 

Units of Com 
0 1 2 3 4 

Contracted 

Total Price, $ 0 400 900 1400 2000 

If the farmer contracts too much of a future harvest to the feed distributor, leaving less than 
10 units for the farm's own needs, then the shortfall must be made up by purchasing corn on 
the spot market at $700 per unit. Any corn held at the end of the harvest for which storage 
facilities are unavailable is sold on the spot market for $300 per unit. The farmer limits 
transactions on the spot market to those that are absolutely necessary. How much corn 
should the farmer contract to the feed distributor each year if the farmer wishes to maximize 
expected discounted profit over the foreseeable future, with an effective interest rate of 7 
percent? 

We take the beginning of a stage to be the end of a harvest, after any previous contract has been 
honored and any transactions on the spot market have been completed in preparation for the upcoming 
winter. At such time, the farmer has either 10, 11, or 12 units of com in storage, so we designate these 
levels as states 1, 2, and 3, respectively. The decision facing the farmer is as to the number of units of 
com from next year's harvest to contract to the distributor. The transition probabilities and expected 
yearly gains associated with each state and each decision are listed in Table 20-4. For instance, to 
calculate line 4 of Table 20-4, which corresponds to a current storage level of 10 units and a decision to 
contract 3 units of next year's harvest, note that there are four ways for the farmer to remain in state 1 
after 1 year: after the 10 stored units have been consumed over the winter, the farmer could (i) harvest 
10 and buy 3, (ii) harvest 11 and buy 2, (iii) harvest 12 and buy 1, (iv) harvest 13. Thus, 
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pu = 0.10 + 0.20 + 0.30 + 0.25 = 0.85 

The only way for the farmer to begin one stage with 10 units and the next stage with 11 units, given that 
livestock consume 10 units and 3 units must be delivered to the distributor, is for the harvest to yield 14 
units; hence, p 12 = 0.15. There is no way (without unnecessary spot market transactions) to move from an 
inventory of 10 units to one of 12 units; Pn = 0. 

For none of the five possible yields is any corn left for sale on the spot market. The income from spot 
market sales, therefore, will be 0. Since 3, 2, or 1 units are bought on the spot market according as the 
harvest is 10, 11, or 12 units, the expected spot market cost is 

(0.10)(2100) + (0.20)(1400) + (0.30)(700) = $700 

Note that, in contrast to Problem 20.5, the net income for the stage is not strictly determined by the state 
and the decision; instead, it also depends on the random harvest. 

The discount factor is 

1 
a = "ft- 0.07 = 0.934579 

Technically, since all costs and incomes occur at the end of the period, they should be discounted by a 
before being used. If we assume that this has already been done-for example, that the spot market 
cost is really $749, which when discounted by £r becomes $700--then the dollar figures in Table 20-3 are 
automatically discounted appropriately. 

The functional equation is (20.1), with the optimization a maximization. We determine the optimal 
policy by using the five-step algorithm. 

Table 20-4 

State, Decision, Transition Contracted Expected Expected Expected 
i d, Probabilities, Income, Spot Spot Yearly Income, 

Pii(d;) CI Market Market CI+SI-SC 
-- Income, Cost, = C(i, d,) 

j = 1 j=2 j=3 SI sc 

1 1 0 0.10 0.20 0.70 0 165 0 165 
2 1 1 0.30 0.30 0.40 400 45 70 375 
3 1 2 0.60 0.25 0.15 900 0 280 620 
4 1 3 0.85 0.15 0 1400 0 700 700 
5 1 4 1 0 0 2000 0 1295 705 

6 2 0 0 0.10 0.90 0 375 0 375 
7 2 1 0.10 0.20 0.70 400 165 0 565 
8 2 2 0.30 0.30 0.40 900 45 70 875 
9 2 3 0.60 0.25 0.15 1400 0 280 1120 

10 2 4 0.85 0.15 0 2000 0 700 1300 

11 3 0 0 0 1 0 645 0 645 
12 3 1 0 0.10 0.90 400 375 0 775 
13 3 2 0.10 0.20 0.70 900 165 0 1065 
14 3 3 0.30 0.30 0.40 1400 45 70 1375 
15 3 4 0.60 0.25 0.15 2000 0 280 1720 

STEP 1 We arbitrarily choose as the initial policy 

i 1 2 3 

J, 3 4 4 

STEP 2 For the data in lines 4, 10, and 15 of Table 20-4, the data corresponding to the current policy, 
(20.2) gives 
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PV(1) = 700 + (0.934579)[(0.85)PV(1) + (0.15)PV(2) + (O)PV(3)] 

PV(2) = 1300 + (0.934579)[(0.85)PV(l) + (0.15)PV(2) + (O)PV(3)] 

PV(3) = 1720 + (0.934579)[(0.60)PV(1) + (0.25)PV(2) + (0.15)PV(3)] 

which is equivalent to the system 

(0.205607)PV(1)- (0.140187)PV(2) = 700 

-(0.794393)PV(1) + (0.859813)PV(2) = 1300 

-(0.560748)PV(1)- (0.233645)PV(2) + (0.859813)PV(3) = 1720 

The solution to this set of equations is 

PV(1) = $11 986 PV(2) = $12 586 PV(3) = $13 238 

Table 20-5 

Expected Discounted Profit, 
State, Decision, 3 

i d; C(i, d;)+ a L p;i(d;)PV(j) 
j=l 

1 0 165 + (0. 934579)[(0.10)(11 986) + (0.20)(12 586) + (0. 70)(13 238)] = 12 298 
1 1 375 + (0.934579)[(0.30)(11 986) + (0.30)(12 586)+ (0.40)(13 238)] = 12 213 
1 2 620 + (0.934579)[ (0.60)(11 986) + (0.25)(12 586) + (0.15)(13 238)] = 12 138 
1 3 700 + (0.934579)[(0.85)(11986)+ (0.15)(12 586)+ (0)(13 238)] = 11 986 
1 4 705 + (0.934579)[ (1)(11986)+ (0)(12 586) + (0)(13 238)] = 11 907 

2 0 375 + (0.934579)[ (0)(11 986) + (0.10)(12 586) + (0.90)(13 238)] = 12 686 
2 1 565 + (0.934579)[(0.10)(11986)+ (0.20)(12 586) + (0.70)(13 238)] = 12 698 
2 2 875 + (0.934579)[(0.30)(11 986) + (0.30)(12 586) + (0.40)(13 238)] = 12 713 
2 3 1120 + (0. 934579)[ (0.60)(11 986) + (0.25)(12 586) + (0.15)(13 238)] = 12 638 
2 4 1300+ (0.934579)[(0.85)(11986)+ (0.15)(12 586)+ (0)(13 238)] = 12 586 

3 0 645 + (0. 934579)[ (0)(11 986) + (0)(12 586) + (1)(13238)] = 13017 
3 1 775 + (0.934579)[ (0)(11 986) + (0.10)(12 586) + (0.90)(13 238)] = 13 086 
3 2 1065 + (0.934579)[(0.10)(11 986) + (0.20)(12 586) + (0. 70)(13 238)] = 13198 
3 3 1375 + (0. 934579)[(0.30)(11 986) + (0.30)(12 586) + (0.40)(13 238)] = 13 213 
3 4 1720 + (0. 934579)[ (0.60)(11 986) + (0.25)(12 586) + (0.15)(13 238)] = 13 238 

Table 20-6 

Expected Discounted Profit, 
State, Decision, 3 

i d; C(i, d,)+ a ~P;i(d;)PV(j) 
j~J 

1 0 165 + (0.934579)[(0.10)(14 253) + (0.20)(14 714) + (0.70)(15 294)] = 14 253 
1 1 375 + (0.934579)[(0.30)(14 253) + (0.30)(14 714) + (0.40)(15 294)] = 14 214 
1 2 620 + (0.934579)[(0.60)(14 253) + (0.25)(14 714) + (0.15)(15 294)] = 14 194 
1 3 700 + (0.934579)[(0.85)(14 253) + (0.15)(14 714) + (0)(15 294)] = 14 085 
1 4 705 + (0.934579)[ (1)(14 253) + (0)(14 714) + (0)(15 294)] = 14 026 

2 0 375 + (0.934579)[ (0)(14 253) + (0.10)(14 714) + (0.90)(15 294)] = 14 614 
2 1 565 + (0.934579)[(0.10)(14 253) + (0.20)(14 714) + (0.70)(15 294)] = 14 653 
2 2 875 + (0.934579)[(0.30)(14 253) + (0.30)(14 714) + (0.40)(15 294)] = 14 714 
2 3 1120 + (0.934579)[(0.60)(14 253) + (0.25)(14 714)+ (0.15)(15 294)] = 14 694 
2 4 1300 + (0.934579)[(0.85)(14 253) + (0.15)(14 714) + (0)(15 294)] = 14 685 

3 0 645 + (0.934579)[ (0)(14 253) + (0)(14 714) + (1 )(15 294)] = 14 938 
3 1 775 + (0.934579)[ (0)(14 253) + (0.10)(14 714) + (0.90)(15 294)] = 15 014 
3 2 1065 + (0.934579)[(0.10)(14 253) + (0.20)(14 714) + (0.70)(15 294)] = 15 153 
3 3 1375 + (0.934579)[(0.30)(14 253) + (0.30)(14 714) + (0.40)(15 294)] = 15 214 
3 4 1720 + (0.934579)[(0.60)(14 253)+ (0.25)(14 714) + (0.15)(15 294)] = 15 294 

245 
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STEP 3 Using these present values and the data from Table 20-4, we carry out the calculations ex­
hibited in Table 20-5. For each state i, the largest calculated value is m (i). Thus, the new 
policy is 

2 3 

d; 0 2 4 

STEPS 4 AND 5 Since this new policy differs from the previous one, we designate this new policy as 
the current one and return to Step 2. 

STEP 2 For the data in lines 1, 8, and 15 of Table 20-4, the data corresponding to the latest policy, 
(20.2) gives 

PV(l) = 165 + (0.934579)[(0.10)PV(l) + (0.20)PV(2) + (0.70)PV(3)] 

PV(2) = 875 + (0.934579)[(0.30)PV(1) + (0.30)PV(2) + (0.40)PV(3)] 

PV(3) = 1720 + (0.934579)[(0.60)PV(1) + (0.25)PV(2) + (0.15)PV(3)] 

which is equivalent to the system 

(0.906542)PV(1)- (0.186916)PV(2)- (0.654206)PV(3) = 165 

-(0.280374)PV(1) + (0.719626)PV(2)- (0.373832)PV(3) = 875 

-(0.560748)PV(l)- (0.233645)PV(2) + (0.859813)PV(3) = 1720 

The solution to this set of equations is 

PV(1) = $14 253 PV(2) = $14 714 PV(3) = $15 294 

STEP 3 Using these present values and the data from Table 20-4, we carry out the calculations ex­
hibited in Table 20-6. The new policy is seen to be 

i 1 2 3 

d; 0 2 4 

STEP 4 Since this latest policy is identical to the current policy, it is the optimal one. If the farmer 
enters a stage with an inventory of 10 units of com, no contract should be signed; if the 
inventory is 11 units, a contract for 2 units should be signed; and if the inventory is 12 units, a 
contract for 4 units should be signed. 

20.7 A supermarket chain rates its weekly profits from each store as either high or low. Whenever 
profits from a particular store are high one week, the store manager has the option of either 
continuing the current promotional campaign or introducing a new one. If the current 
campaign is retained, the profits for the following week will reach a high of $8000 with 
probability 0.5 and a low of $4000 with probability 0.5. With a new promotional campaign, 
profits the following week will reach a high of $7000 with probability 0.8 and a low of $4000 
with probability 0.2. Whenever profits for a particular week are low, the store manager must 
introduce a new promotional campaign, which will result the following week in a high profit of 
$6000 with probability 0.4 and a low profit of $3000 with probability 0.6. Determine a 
promotional policy for a given store that ultimately will maximize the expected weekly profits. 

We take the beginning of a stage to be the end of a business week, after all profits have been 
determined but before a decision on the following week's promotional campaign is made. The possible 
states for each stage are those of high and low profits, which we designate as states 1 and 2, respectively. 
The possible decisions are to keep the current campaign and to introduce a new one; these decisions we 
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designate as 1 and 2, respectively. Both decisions are feasible for state 1, but only decision 2 is permitted in 
state 2. The transition probabilities and expected profits depend on both the state and the decision; they are 
compiled in Table 20-7. 

Table 20-7 

State, Decision, Transition High Low Expected Weekly Profit, 
i d; Probabilities, Profit, Profit, 2 

p;j{d;) III rr2 C(i, d,) = L p,jrrj 
j=l 

j=1 j=2 

1 1 1 0.5 0.5 8000 4000 (0.5)(8000) + (0.5)(4000) = 6000 
2 1 2 0.8 0.2 7000 4000 (0.8)(7000) + (0.2)(4000) = 6400 

3 2 2 0.4 0.6 6000 3000 (0.4)(6000) + (0.6)(3000) = 4200 

There are only two possible policies for this process: 

i 1 2 i 1 2 

and 
d(l)i 1 2 d(2)i 2 2 

The transition matrix for the first policy is obtained from lines 1 and 3 of Table 20-7 as 

[
0.5 0.5] 

p(l) = 0.4 0.6 

The limiting matrix for P(l) is 

• _ 1. P" [4/9 5/9] 
"-'(!) = n~ (I) = 4/9 5/9 

Consequently, Xfi/ = [4/9, 5/9), regardless of the initial state of the process, and the expected return per 
week is, in the steady state, 

Ro> = C(1, 1)xfili + C(2, 2)xfil2 = (6000)~) + (4200)(~) = $5000 

The transition matrix for the second policy is obtained from lines 2 and 3 of Table 20-7 as 

p [0.8 0.2] 
(2) = 0.4 0.6 

The limiting matrix for this transition matrix is 

• __ 1. P" [2/3 1/3] 
"-'(2) = }!!!, (2) = 2/3 1/3 

Hence, Xfi/ = [2/3, 1/3], and the expected return per week is, in the steady state, 

R(2) = C(1, 2)xfi/I + C(2, 2)xfik = (6400)(~) + (4200)(~) = $5666.67 

The expected return per week for policy 2 is better than that for policy 1; hence policy 2 is the 
optimal one. The store manager should introduce a new promotional campaign each week. 

20.8 Solve Problem 20.7 by the six-step algorithm. 

STEP 1 As the initial policy {J,}, arbitrarily choose the policy {d(l).} of Problem 20.7. 

STEP 2 The transition matrix and expected weekly profits associated with this policy are obtained from 
lines 1 and 3 of Table 20-7 as 

P= [0.5 0.5] 
0.4 0.6 

C(1, 1) = 6000 C(2, 2) = 4200 
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STEP 3 With these data, system (20.3) becomes 

WI+ R = 6000 + (0.5)wi + (0.5)w2 

w2 + R = 4200 + (0.4)w, + (0.6)w2 

Setting WI= 0 and solving, we obtain R = 5000, w2 = -2000. 

Table 20-8 

State, Dedsion, 
2 

i d; 
C(i, d;)+ LPij(d;)Wj 

j~I 

1 1 6000 + (0.5)(0) + (0.5)(-2000) = 5000 
I 2 6400 + (0.8)(0) + (0.2)(-2000) = 6000 

2 2 4200 + (0.4)(0) + (0.6)(-2000) = 3000 

[PART II 

STEP4 Using these values for WI and w2, along with data from Table 20-7, we carry out the maxi­
mization indicated in (20.4). See Table 20-8, which shows the new policy to be 

~ 
IT3 

STEPS 5 AND 6 Since this latest policy is different from the current one, we designate this new policy 
as the updated current policy and return to Step 2. 

STEP 2 The transition matrix and expected profits for this new policy are obtained from lines 2 and 3 
of Table 20-7 as 

P= [0.8 0.2] 
0.4 0.6 

C(l, 2) = 6400 C(2, 2) = 4200 

STEP 3 With these data, (20.3) becomes 

WI + R = 6400 + (0.8)wi + (0.2)w2 

w2 + R = 4200 + (0.4)wi + (0.6)w2 

Setting WI= 0 and solving, we obtain R = 5666.67, w2 = -3666.67. 

Table 20-9 

State, Decision 
2 

C(i, d;) + L p;j(d;)Wj 
i d; FI 

I I 6000 + (0.5)(0) + (0.5)(-3666.67) = 4166.67 
I 2 6400 + (0.8)(0) + (0.2)(- 3666.67) = 5666.67 

2 2 4200 + (0.4)(0) + (0.6)(-3666.67) = 2000.00 

STEP 4 Using these values for WI and w;, along with data from Table 20-7, we generate Table 
20-9. The new policy is seen to be 

~ 
~ 
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STEP 5 Since this latest policy is identical to the current policy, it is the optimal policy. The 
steady-state, expected return per week for this policy is given in the last iteration of Step 3 
as R = $5666.67. 

20.9 Solve Problem 20.6 if the objective is to maximize the expected profit per year (in the steady 
state). 

STEP 1 We arbitrarily choose as the initial policy 

i 1 2 3 

a, 0 2 4 

STEP 2 Using the data in lines 1, 8, and 15 of Table 20-4, the data corresponding to the current policy, 
we find 

- [0.10 0.20 0.70] 
p - 0.30 0.30 0.40 

0.60 0.25 0.15 

STEP 3 With these data, (20.3) becomes 

C(1, 0) = 165 C(2, 2)= 875 C(3, 4) = 1720 

Wt + R = 165 + (0.10)wt + (0.20)w2 + (0.70)w3 

w2 + R = 875 + (0.30)wt + (0.30)w2 + (0.40)w3 

WJ + R = 1720 + (0.60)wt + (0.25)w2 + (0.15w3) 

Setting w1 = 0 and solving for the remaining variables, we find R = 967.340, W2 = 449.645, 

and w3=1017.73. 

STEP 4 Using these values for w~, w2, and W3, along with data from Table 20-4, we generate Table 
20-10. The new policy is found as 

i 1 2 3 

d; 0 2 4 

11able 20-10 

State, Decision, 
3 

C(i, d;) + ~ pq(d;)Wj 
i d; j$1 

1 0 165 + (0.10) 0) + (0.20)(449.645) + (0.70)(1017.73) = 967.34 
1 1 375+ (0.30 0)+ (0.30)(449.645)+ (0.40)(1017.73) = 916.99 
1 2 620+ (0.60) 0)+ (0.25)(449.645)+ (0.15)(1017.73) = 885.07 
1 3 700+ (0.85) 0)+ (0.15)(449.645)+ (0)(1017.73) = 767.45 
1 4 705 + (1) 0)+ (0)(449.645)+ (0)(1017.73)= 705.00 

2 0 375+ (0) 0)+ (0.10)(449.645)+ (0.90)(1017.73) = 1335.92 
2 1 565+ (0.10) 0)+ (0.20)(449.645)+ (0.70)(1017.73) = 1367.34 
2 2 875+ (0.30) 0) + (0.30)(449.645) + (0.40)(1017.73) = 1416.99 
2 3 1120 + (0.60)C 0) + (0.25)(449.645) + (0.15)(1017 .73) = 1385,07 
2 4 1300 + (0.85)1 p) + (0.15)(449.645) + (0)(1017.73) = 1367.45 

3 0 645+ (OX P>+ (0)(449.645)+ (1)(1017.73) = 1662.73 
3 1 775+ (OX P> + <0.10)(449.645) + <0.90)(1017.73) = 1735.92 
3 2 1065 + (0.10)(0)+ (0.20)(449.645)+ (0.70)(1017.73) = 1867.34 
3 3 1375 + (0.30)(0) + (0.30)(449.645) + (0.40)(1017.73) = 1916.99 
3 4 1720 + (0.60)(0) + (0.25)(449.645) + (0.15)(1017.73) = 1985.07 
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STEP 5 Since this latest policy is identical to the current policy, it is the optimal policy, with an ex­
pected profit per year given in Step 3 as R = $967.34. By coincidence, this optimal policy is 
identical to the one obtained in Problem 20.6, where expected discounted profit was maximized. 
In general, different objectives result in different optimal policies. 

20.10 Using the data of Problem 20.7, determine w 1 for the first n weeks (n = 1, 2, 3, ... ), under the 

policy {d(l);}. 

As shown in Problem 20.7 the transition matrix for the given policy is 

Successive powers of P are 

p2 = [0.45 0.55] 
0.44 0.56 

which converge to 

P P [
0.5 0.5] 

= (1) = 0.4 0.6 

p3 =' [0.445 0.555] 
0.444 0.556 

P' = [0.44445 0.55555] 
0.44444 0.55556 

L = [4/9 5/9] 
4/9 5/9 

p4 = [0.4445 0.5555] 
0.4444 0.5556 

The expected return per week is, in the steady state, 

R = (6000)~) + (4200)(~) = $5000 

If the process begins in state 1, then x<o> = [1, 0], and it follows from (19.1) that 

x<n> = x<o>p" = [l, 01 rP;!
1

>> pW] = [p\"> p\">] LP2 P~'i> 1, 2 

for n = 0, 1, 2, ... , where we define p\0? •= 1, p\~ = 0. The expected return for the nth week (n = 

1, 2, 3, ... ) is 

C(1, 1)x\n-I) + C(2, 2)x~n-I) = 6000p\T 1) + 4200p\'i-I) 

Since the expected return for the first n weeks is the expected return for the first n - 1 weeks plus the 
expected return for the nth week, we have, for n = 1, 2, 3, ... , 

Wn(1) = Wn -I(l) + 6000p\1-I) + 4200p\'i-I) (1) 

where w0(1) = 0. From (1) we generate Table 20-11. The last column of the table shows that WI converges 
to 1111b. To two-decimal accuracy, WI = 1111.11 for all n greater than 5. 

Table 20-11 

n 
(n-1) 

Pu 
(n-1) 

PI2 6000p\'i-l) + 4200p\~-l) Wn-I(I) Wn(l} nR WJ = Wn(l)- nR 

I I 0 6000 0 6000 5000 1000 
2 0.5 0.5 5100 6000 11100 10000 1100 
3 0.45 0.55 5010 11100 16110 15000 1110 
4 0.445 0.555 5001 16110 21111 20000 1111 
5 0.4445 0.5555 5000.1 21111 26111.1 25000 1111.1 
6 0.44445 0.55555 5000.01 26 111.1 31111.11 30000 1111.11 
7 0.444445 0.555555 5000.001 31111.11 36111.111 35000 1111.111 
8 0.4444445 0.5555555 5000.0001 36 111.111 41111.1111 40000 1111.1111 
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20.11 Derive (20.3). 

Let P = (p;1(ct;)) be the transition matrix for a Markov decision process with an unbounded horizon, 
under the policy {J;}. The undiscounted expected worth of the process over n periods, if the process 
starts in state i, is the expected return from the first period, C(i, d;), plus the expected return from the 
remaining n- 1 periods: 

N 

Wn(i) = C(i, J;) +I, PiJ(J;)Wn-I(j) (1) 
J~I 

Subtract 
N 

nR = R + ~ (n- 1)Rp11 (ct;) 
i-1 

from (1) to obtain 
N N 

Wn(i)- nR = C(i, ct;) + l:,p;J(J;)Wn-I(j)- R- 'I, (n- l)Rp;J(J;) 
1-I 1-I 

or 
N 

[wn(i)- nR) + R = C(i, J;)+ "l:,P;J(J;)[Wn-t(j)- (n -1)R) (2) 
1-I 

Since W; = Wn (i)- nR and since 

WJ = Wn(j)- nR = Wn-t(j)- (n -1)R 

if n is large (see Problem 20.10), (2) is equivalent to (20.3) for all i (i = 1, 2, ... , N). 

20.12 Show that if w!, w t ... , w ~. R * is a solution to system (20.3), so too is w T + k, w ~ + k, 
... , w~+ k, R *, for any constant k. 

N N 

[(w~ + k) + R*)- [C(i, d;) +I, p;1(ct;)(w1 + k)] = [(w~ + k) + R*)- [c(i, d;) +I, p;1(ct;)w1 + k] 
,-I 1-I 

N 

= [w~ + R *]- [ C(i, d;) + ~ p;1(ct;)w1] 

=0 

The choice k = -wT justifies setting WI equal to zero in Step 3 of the six-step algorithm. 
The fact that the w;, and hence the wn(i), are determined only up to an additive constant k is of no 

economic significance to the objective at hand, being equivalent merely to an additional, fixed payoff of k 
dollars to the decision maker before the process begins. This can have no effect on the optimal policy (notice 
that the optimization in (20.4) is not affected by the replacement w1 ~ w1 + k ], nor any effect on the optimal 
return per period in the steady state (the k dollars being spread over infinitely many periods). 

Supplementary Problems 

20.13 The profit P (in dollars) that a chicken farmer receives from each chicken sent to market is given by the 
formula 

p = 1- (0.9)N 2 

where N denotes ,the age of the fowl in weeks. Chickens are sent to market once a week, at the end of 
the week, and their places are immediately taken by newborn birds from the farm's incubators. There 
is no market for chickens less than 1 week old. Show that it is unprofitable for the farmer to keep 
chickens more than 5 weeks, and then determine the best age to market them, if the farmer's objective is 
to maximize total discounted profit at an effective interest rate of 9 percent per annum. 
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20.14 A large corporation budgets 2 units of money each year for a Goodwill Fund that is distributed by the 
president of the corporation in the form of grants (in unit amounts) to organizations. Since large grants 
bring more goodwill to the corporation than do small ones, the president need not distribute these funds 
each year, but may retain unit amounts for 1 or more years to accumulate sufficient funds for the 
awarding of larger grants. Corporation policy, however, never allows the balance in the Goodwill Fund 
to exceed 5 units, for at that level the fund begins to attract demands on it from other segments of the 
company. Determine a policy for awarding grants that will maximize the total discounted value of 
goodwill, at an effective interest rate of 6 percent per annum, if the returns from various grants are as 
follows: 

Amount of Grant, units 0 I 2 3 4 5 

Cash Value of Goodwill, 
0 I 2.1 3.3 4.5 5.6 

units 

20.15 A machine costs $7000 new and, as a matter of policy, is never kept more than 2 years. At the begin­
ning of each year, a decision must be reached whether to KEEP the current machine (if it is not too old), 
BUY a new machine, or LEASE a new machine. A lease is nominally in effect for 2 years, but it may 
be broken after 1 year with the payment of a $700 penalty cost. The operating cost, salvage value, and 
leasing cost for a machine depend on its age, as shown in Table 20-12. 

Table 20-12 

Age 

0 I 2 

Operating Cost $500 1000 0 0 0 

Salvage Value 0 0 0 4500 4000 

Leasing Cost 1700 1600 0 0 0 

Leased machines have no salvage value, since they are owned by the leasing company. Determine an 
equipment replacement policy that will minimize the total discounted cost with an unbounded horizon, at 
an effective interest rate of 7! percent per annum. 

20.16 Prove that system (20.2) uniquely determines PV(l), PV(2), ... , PV(N). 

20.17 Determine PV(i) for each state i of the unbounded process described in Problem 20.6, under the policy 

i I 2 3 

d; 0 I 2 

20.18 Apply one iteration of the five-step algorithm to Problem 20.6, using the initial policy given in Problem 
20.17. What is the resulting updated policy? 

20.19 A machine that produces plastic milk bottles is characterized at the end of each shift as being in either 
good operating condition (state 1), acceptable operating condition (state 2), or poor operating condition 
(state 3); the rating is based on the percentage of unusable bottles made by it during the shift. Between 
shifts, the machine can be adjusted at a cost of $50, in which case it starts the next shift in state 1. The 
probability that a machine will remain in state i from the beginning to the end of a shift is given in the 
following table: 
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i 1 2 3 

Pii 0.8 0.5 1 

If a machine does not remain in a given state, it deteriorates to the next higher state. Expected costs for 
unusable bottles for an entire shift is a function of the state of the machine at the beginning of the shift: 

State I 2 3 

Expected Cost $10 $40 $100 

Determine an optimal policy for adjusting machines that will minimize expected discounted cost for an 
unbounded horizon, given that a = 0.95. 

20.20 An auto parts store orders and receives a certain model of muffler each Saturday night, for sale the following 
week. If mufflers are ordered, the transportation cost to the store is $30, regardless of the number; if no 
mufflers are ordered, there is no delivery charge. Space limitations restrict the store's inventory of this 
muffler to a maximum of 4. The carrying charge for an unsold muffler is $9 per week. 

The demand for the muffler is random, with the following probability distribution: 

Weekly Demand 0 I 2 3 

Probability 0.3 0.4 0.2 0.1 

A sale, with its unrealized profit of $23 per muffler, is lost whenever a customer wants a muffler and the 
store has none in stock. Determine an optimal reordering policy for the store that will minimize 
expected discounted cost for an unbounded horizon, if a= 0.98. 

20.21 Apply one iteration of the six-step algorithm toward maximizing the expected profit per year of the 
process described in Problem 20.6, using the initial policy given in Problem 20.17. What is the updated 
policy? 

20.22 Solve Problem 20.20 if the objective is to minimize expected cost per week. 

20.23 Ratings for a national television show are published weekly and are used to set advertising rates for the 
succeeding week according to the following schedule: 

Rating, points 15 16 17 18 19 

Advertising Rate, units 10 II 12 14 16 

Any show rated under 15 points is dropped from the network and replaced by a new series which initially 
can expect to gain a rating of 17. No show ever garners more than 19 points. 

Each week management either can do nothing for a show (at no cost) or can give it additional pro­
motion (at a cost of 0.7 unit). The probability distributions for the succeeding week's rating, correspond­
ing to the two options, are given in Tables 20-13 and 20-14, respectively. 
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Table 20-13 

Last Rating 15 16 17 18 19 

Probability of 
0.4 0.5 0.6 0.8 0.9 

Retaining Rating 

Probability of 
0.6 0.4 0.2 0.2 O.l 

Losing 1 Point 

Probability of 
0 0.1 0.2 0 0 

Losing 2 points 

Table 20-14 

Last Rating 15 16 17 18 19 

Probability of 
O.l 0.3 0.2 0.1 0 

Gaining 1 Point 

Probability of 
0.6 0.6 0.7 0.8 0.9 

Retaining Rating 

Probability of 
0.3 0.1 0.1 0.1 0.1 

Losing 1 Point 

Determine a decision policy for management that will maximize the expected return per week from 
television shows under its control. 



Chapter 21 
Markovian Birth-Death Processes 

POPULATION GROWTII PROCFSSES 

A population is a set of objects having a common characteristic. Examples include individ­
uals affected with measles, automobiles waiting at a toll plaza, and inventory in a warehouse. A 
large number of decision processes are concerned with analyzing and controlling the growth of a 
population. 

We designate the number of members in a given population at time t by N(t). The states of a 
growth process are the various values N(t) can assume; these are generally the nonnegative integers. 
The probability that N(t) equals a specific nonnegative integer n is denoted by Pn(t). 

A birth occurs whenever a new member joins the population; a death occurs whenever a member 
leaves the population. A pure birth process is one that experiences only births, no deaths; a pure 
death process is one that experiences only deaths, no births. 

Example 21.1 A college advertises for candidates for the position of Academic Dean, with a closing date for 
receiving applications specified. If no processing of applications is undertaken until the closing date and if no 
applications are withdrawn by the candidates themselves, then the process of receiving applications is a pure 
birth process up to the closing date. If no applications are accepted after the closing date, then the process of 
reducing the pool of applications under active consideration through evaluation and elimination is a pure death 
process. If applications are processed during the same period they are received, the process is a birth-death 
process. In all cases, the population is the set of completed applications under active consideration. 

Definition: A function f(t) is o(at), read "little oh of at," if 

lim f(at) = o 
.11-o at 

Such a function tends to zero at a faster rate than the first power of its argument. If f(t) and g(t) are 
each o(at), so are f(t) + g(t) and f(t)g(t). 

Example 21.2 The function f(t) = t 3 is o(dt), since 

But sin t¥ o(dt), because 

GENERALIZED MARKOVIAN 
BIRm-DEAm PROCFSSES 

lim (dtf = lim (dt)2 = 0 
At-0 flt At-0 

A population growth process is a Markov process (see Chapter 19) if the transition probabilities 
for moving from one state to another depend only on the current state and not on any of the past 
history experienced by the process in reaching the current state. More formally, a generalized 
Markovian birth-death process satisfies the follo~ing criteria: 

The probability distributions governing the numbers of births and deaths in a specifi~ time interval depend on 
the length of the interval but not on its starting point. I 

255 
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The probability of exactly one birth in a time interval of length l:l.t, given a population of n members at the 
beginning of the interval, is An l:l.t + o(l:l.t), where An is a constant, possibly different for different values of n. 

The probability of exactly one death in a time interval of length l:l.t, given a population of n members at the 
beginning of the interval, is P,n l:l.t + o(l:l.t), where p.., is a constant, possibly different for different values of n. 

The probability of more than one birth and the probability of more than one death in a time interval of length l:l.t 
are both o(l:l.t). 

These criteria imply, in the limit as at approaches zero, the Kolmogorov equations for the state 
probabilities: 

dpn(t) _ 
~- -(An + P.n)Pn (t) + P.n+!Pn+!(t) + An-lPn-!(t) (n = 1, 2, ... ) 

dpJ~t) = -Aopo(t)+ J.L1P1(t) (21.1) 

(See Problem 21.6.) 

LINEAR MARKOVIAN BIRm PROCESSES 

A linear Markovian birth process is a Markovian pure birth process in which the probability of a 
birth in a small time interval is proportional to both the current number of members in the popula­
tion and the length of the interval. That is, for all n, P.n = 0 and An = nA. The constant of pro­
portionality A is the birth rate or arrival rate. The solution to (21.1), for an initial population of one 
member, is 

(n = 1, 2, ... ) 
(n = 0) 

(21.2) 

The expected size of the population at time t is E[N(t)] = eAt. If the population is initialized with 
N(O) members, then its expected size at time t is 

E[N(t)] = N(O)eAt (21.3) 

(See Problem 21.1.) 

LINEAR MARKOVIAN DEAm PROCESSES 

A linear Markovian death process is a Markovian pure death process in which the probability of 
a death in a small time interval is proportional to both the current size of the population and the 
length of the interval. That is, for all n, An= 0 and P.n = np.. The constant of proportionality p. is 
the death rate. The solution to (21.1), for an initial population of N(O), is 

1 
(N(O))e-,.,.'(1 _ e-"'''f"(O)-n 

Pn(t) = n 

0 

[n ~N(O)] 
(21.4) 

[n > N(O)] 
The expected size of the population at time t is 

E[N(t)] = N(O)e-"'1 (21.5) 

(See Problem 21.3.) 

LINEAR MARKOVIAN BIRm-DEAm PROCESSES 

A linear Markovian birth-death process is a Markovian birth-death process in which, for all n, 
An = nA and P.n = np.. The solution to (21.1), for an initial population of one member, is 



CHAP. 21] 

where 

MARKOVIAN BIRTH-DEATH PROCESSES 

Pn(t) = ![1- r(t)][1- s(t)][s(t)]"-
1 

r(t) 

and 

(n = 1, 2, ... ) 

(n = 0) 

_A [e<A-,.)1- 1]_ 
s(t) = Ae(A ,.)t _ /L 

257 

(21.6) 

The expected size of the population at time t is E[N(t)] = e<A-,.)1. If the population is initialized at 
N(O) members, then its expected size at time t is 

E[N(t)] = N(O)e<A-,.)1 (21.7) 

(See Problem 21.5.) 
It is clear that the linear birth-death process includes the linear birth process and the linear death 

process as the special cases /L = 0 and A = 0, respectively. Another important property, which is 
suggested by (21. 7), is contained in the following remark [see Problem 21.9(b )] . 

Remark: A linear Markovian birth-death process with parameters A and /L and an initial population 
N(O) is equivalent to the sum of N(O) concurrent but independent processes, each with 
parameters A and /L and an initial population 1. 

Example 21.3 Find the state probabilities p~>(t) for the linear Markovian birth process beginning with a 
population of 2. 

The two independent subprocesses each have the state probabilities given by (21.2). The overall process 
will be in state n if the first subprocess is in state 0 and the second is in state n, or if the first is in state 1 and the 
second is in state n - 1, or . . . . Thus, 

p~2)(t) = Po(t)pn(t) + Pl(t)Pn-!(t) + · · · + Pn(t)Po(t) 

Using (21.2) in (21.8), we find 

POISSON BIRm PROCESSES 

(n = 2, 3, ... ) 
(n = 0,1) 

(21.8) 

A Poisson birth process is a Markovian pure birth process in which the probability of a birth in 
any small time interval is independent of the size of the population. That is, for all n, An = A 
and P.n = 0. In such a process, new arrivals to the population are not created by current members; 
rather, they enter the population from without, as did the completed applications in Example 21.1. 
New members can enter the population even when the current state is 0, a marked difference from 
the linear Markovian birth situation. 

The solution to (21.1), for an initial population of 0, is 

(At)" Pn(t) = --,;y- e-At (n = 0, 1, 2, ... ) (21.9) 

If the population is initialized at N(O) members, the solution to (21.1) is 

j 
(At)n-N(O)e-At 

Pn(t) = [n- N(O)]! [n;:::: N(O)] 

0 [n <N(O)] 
(21.10) 

The expected size of the population at time t is 

E[N(t)] = N(O)+ At (21.11) 

(See Problem 21.2.) 
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Definition: A discrete random variable N has a Poisson distribution, with paramt:ter a 2:0, if 

an 
P(N = n)= -e-a 

n! 

The expected value of N is E(N) = 1:r. 

(n = 0, 1, 2, ... ) (21.12) 

Definition: A continuous random variable T has an exponential distribution, with parameter f3 2: 0, 
if 

P(T s t) = 1- e-tJ• 

The expected value of T is E(T) == l/{3. 

(t 2: 0) (21.13) 

We may summarize (21.9) and (21.10) by saying that, in a Poisson birth process with birth rate A, 
N(t)- N(O) has a Poisson distribution, with parameter At. Furthermore, in such a process, the 
interarrival time, which is the time between successive births, has an exponential distribution, with 
expected value 1/A. (See Problem 21.8.) Conversely, 

Theorem 21.1: If the interarrival time is exponentially distributed, with expected value 1/{3, then 
the number of arrivals is a Poisson birth process, with birth rate A = {3. 

POISSON DEAm PROCESSES 

A Poisson death process is a Markovian pure death process in which the probability of a death in 
any small time interval is independent of the size of the population. That is, for all n, An = 0 
and P.n = p.. The solution to (21.1), for an initial population N(O), is 

Pn(t) = 

(See Problem 21.4.) 

0 

(JLt~<O)-ne-"'' 

[N(O)- n]( 
N(O) 

1- ~ Pn(t) 
n=l 

POISSON BIRm-DEAm PROCESSES 

[n > N(O)] 

[1 :5 n :5 N(O)] (21.14) 

(n = 0) 

A Poisson birth-death process is a Markovian birth-death process in which both the probability 
of a birth and the probability of a death in any small time interval are independent of the size of the 
population. That is, for all n, An = A and /Ln = IL· Such processes form the basis of queueing 
theory and are developed in Chapter 23. 
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Solved Problems 

21.1 A linear Markovian birth process initialized at one member experiences an average hourly 
birth rate A = 2. Determine the probability of having a population larger than 3 after 1 h, 
and the expected size of the population at that time. 

With A= 2 new births per member per hour and with t = 1 h, (21.2) gives 

Po0) = 0 p2(1) = (1- e-~1e-2 = 0.117 

The probability of having more than three members in the population after 1 h is then 

1- (0+ 0.135 + 0.117 + 0.101) = 0.647 

The expected size of the population at that time is given by (21.3) as 

E(N(l)] = 1e2<1> = 7.389 members 

21.2 Solve Problem 21.1 if the process is a Poisson birth process. 

With N(O) = 1, t = 1 h, and A = 2 births per hour, (21.10) gives 

21 
Po(1) = 0 P20) = 

11 
e-2 = 0.271 

The probability of having more than three members in the population after 1 his then 

1- (0 + 0.135 + 0.271 + 0.271) = 0.323 

The expected size of the population at that time is given by Eq. (21.11) as 

E[N(1)] = 1 + 2(1) = 3 members 

21.3 A linear Markovian death process initialized at 10 members experiences an average weekly 
death rate /L = 0.6. Determine the probability of having a population of at least eight members 
after 3 days, and the expected size of the population at that time. 

With N(O) = 10, t = (3/7) week, and p. = 0.6 deaths per member per week, (21.4) gives 

ps(3!7) = {~0)e-8(0·6><3m(l- e-co.6x3m)1o-8 = 45(0.1278)(1- 0.7733)2 = 0.296 

p9(3/7) = {~0)e-9(0 ·6X3m(1- e-co.6x3m)10
-
9 = 10(0.0988)(1- 0.7733)1 = 0.224 

p 10(3/7) = G~)e- 10(o.6x3m(1- e-co.6x3m)10
-

10 = 1(0.0764)(1- 0.7733)0 = 0.076 

The probability of having eight or more members in the population after 3 days is therefore 

0.296 + 0.224 + 0.076 = 0.596 

The expected size of the population at that time is given by (21.5) as 

E[N(3/7)] = 10e-co.6x3m = 7.73 members 

21.4 Solve Problem 21.3 if the process is a Poisson death process. 

With N(O) = 10, t = (3/7) week, and p. = 0.6 deaths per week, (21.14) gives 
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o(3/7) = [(0.6)(3/7)]'o-lo -co.6J(3m = 0 7733 
p, (10--10)! e · 

p9(3/7) = [(O.?{~~~~;o-
9 

e-<o.6x3m = 0.1988 

ps(3/7) = [(0(~~~~7ir-s e-(0.6)(Jm = 0.0256 

The probability of having eight or more members in the population after 3 days is then 

0.0256+ 0.1988+ 0.7733 = 0.9977 

To calculate the expected value of N(3/7), the remaining state probabilities for t = 3/7 are 
needed. Equation (21.14) gives these, to four decimals, as 

Thus, 

P7(3/7) = 0.0022 Ps(3/7) = P4(3/7) = · · · = Po(3/7) = 0 

E(N(3/7)] = 10(0.7733)+ 9(0.1988)+ 8(0.0256)+ 7(0.0022)+ 6(0.0001)+ 5(0)+ · · · + 0(0) 

= 9.74 members 

21.5 A biologist observes the growth of bacteria strands in a culture and finds that both the proba­
bility of the birth of a strand and the probability of the death of a strand are proportional 
to the number of strands in the culture and to elapsed time. On the average, each strand 
produces a new strand every 7 h and dies after 30 h. How many strands should be expected in a 
culture after 1 week, if the population is initialized at one strand? 

Taking one day as the unit of time, we have N(O) = 1, 

A = ~ (24) = 3.428571429 births per member per day 

and 
1 

JL = 
30 

(24) = 0.8 deaths per member per day 

It follows from (21. 7) that the expected size of the population after 7 days is 

E[N(7)] = 1e<3·
428571429-o.s)(7) = 97 953164 strands 

21.6 Derive the Kolmogorov equations, (21.1). 

The size of the population at time t + l:l.t, N(t + l:l.t), is governed by the size at time t, N(t), together 
with whatever changes (births and/or deaths) occur in the interval (t, t + l:l.t]. Thus, for n 2: 1, 

P{N(t + l:l.t) = n} = P{N(t) =' n and there are 0 births and 0 
deaths in (t, t + l:l.t]} 

+ 
P{N(t) = n and there are 1 birth and 1 

death in (t, t + l:l.t]} 

+ 
P{N(t) =, n- 1 and there are 1 birth and 0 

deaths in (t, t + l:l.t] 

+ 
P{N(t) =' n + 1 and there are 0 births and 1 

death in (t, t + l:l.t] 

+ 
P{a combination of events involving 

more than 1 birth or more than 1 death 
in (t, t + l:l.t]} 
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or 

Pn(t+dt) =a+ b + c + d+ e 

Utilizing the notion of conditional probability (see Problem 17.5), we have 

a= P{N(t) = n} X P{O births and 0 deaths in dt I N(t) = n} 
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(1) 

By the fundamental assumptions, the probability of zero births in a time interval of length dt is, to within 
o(dt), 1 minus the probability of exactly one birth; given state n at the beginning of the interval, this 
latter probability equals An dt + o(dt). Hence, the probability of zero births is 

1- An dt + o(dt) 

and, under the same conditions, the probability of zero deaths is 

1-P,n dt + o(dt) 

Moreover, births occur independently from deaths. Therefore, 

a = Pn(t) X (1- An dt + o(dt)](1- P,n dt + o(dt)] 

= Pn(t) [1- (An+ P,n)dt] + o(dt) 

Reasoning in similar fashion, we obtain 

and (1) becomes 

b = o(dt) 

c = Pn-l(t) (An-I dt) + o(dt) 

d = Pn+l(t) (P.n+l dt) + o(dt) 

e = o(dt) 

Pn(t + dt) = Pn(t) + (-(An+ P,n)Pn(t) + An-IPn-l(t)+ P,n+IPn+l(t)) dt + o(dt) (2) 

Transposing Pn(t) to the left-hand side of (2), dividing through by dt, and letting dt_.O, we obtain the 
Kolmogorov equations for n = 1, 2, .... 

The case n = 0 requires separate consideration, since no deaths are possible in state 0. Carrying 
out the analysis as above, we readily obtain the remaining Kolmogorov equation. 

21.7 (a) Derive (21.6) and (b) generalize to the case of an arbitrary initial population N(O). 

(a) With An= nA and P.n = np., the Kolmogorov equations, (21.1), become 

dpd?) = -n(A + JL )Pn(t) + (n + 1)P,Pn+l(t) + (n -1)APn-l(t) 

for n = 1, 2, ... , and 

(1) 

(2) 

One way to solve these equations is by replacing them with a single partial differential equation 
for the probability generating function 

~ 

F(z, t) E L Pn(t)zn (3) 
n-o 

The procedure is as follows. Multiply (1) by zn, sum over all n (n = 1, 2, ... ), and add the result 
to (2), giving, after rearrangement, 

~ dpn(t) zn = -(A+ p.) :i: npn(t)zn + JL :i: (n + 1)Pn+l(t)zn +A l: (n -l)Pn-l(t)zn (4) 
n-O dt n-1 n-O n-1 

But, from differentiation of (3), 
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~ dpn(t) z" = aF(z, t) 
.:=-o dt at 

"" aF( t) L npn(t)z" = z + 
n~l z 

i (n + l)Pn+~(t)z" = aFa(z, t) 
n=O Z 

Hence, ( 4) becomes 

(5) 

Solving this partial differential equation by separation of variables, we find that one solution is 

e' (z - 1 )"<A-.. > 
z-5 

The general solution to (5) is 

where 

[ (
z -1)1/(A-.. >] 

F(z, t) = g e' z _ 
5 

(6) 

where g is an arbitrary function of one variable. To determine g, we note that, for an initial 
population of one member, p,(O) = 1 and Pn(O) = 0 (n ;i 1); hence 

"" 
F(z, 0) = L Pn(O)z" = z 

n-o 

Applying this initial condition to (6), we obtain 

Setting 

we have, inversely, 

_ (z - 1)1/CA-.. > y- --
z-5 

z 

whereupon (8) may be written as 

Then (6) becomes 

which simplifies to 

[ (
z -1 )"<A-.. >y-,. 

5 e' -- -1 z-5 

p.[e•<A-,.> -1] + z(-p.e•<A-,.> +A] 
F(z,t)= (Ae'<A ,.5-p.]-z,\(e'<A ,.5-1] 

(7) 

(8) 

(9) 

(10) 

(11) 

Finally, we need to expand F(z, t) in powers of z, thereby obtaining Pn(t) as the coefficient of 
z". Set 

r(t) 

Then 

p.(e'<A-,.>-1] 
Ae'(A ,.) - p. 
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(12) 

In view of the geometric series 

(lxl < 1) 

(12) gives 
~ 

F(z, t) = r(t) + L [r(t)s(t) + m (t)](s(t)]"- 1 z" 
n-1 

It is easily verified algebraically that 

r(t)s(t) + m (t) = (1- r(t)](1- s(t)] 

Hence, 
~ 

F(z, t) = r(t) + L {(1- r(t)](1- s(t)](s(t)]"- 1}z" (13) 

The coefficients in (13) give (21.6). 

(b) One readily verifies that any power of a solution to (5) above is itseH a solution. In particular, 

<l>(z, t) = [F(z, t)]NCO> 

where F(z, t) is given by (11) or (13), is a solution; and this solution satisfies the ini.tial condition 

cf>(z, 0) = [F(z, O)]N<o> = zN<o> 

[see (7)]. Thus, cf>(z, t) is the generating function of the state probabilities for a population 
initialized at N(O) members. The fact that 4> equals pN<O> implies that the random variable corre­
sponding to 4> [i.e., the population with initial size N(O)] is expressible as the sum of N(O) inde­
pendent random variables, each corresponding to F [i.e., N(O) populations with initial size 1]. 
This is the additivity property remarked on earlier in this chapter. 

21.8 Show that the interarrival time in a Poisson birth process with birth rate A is exponentially 
distributed with parameter A. 

Designate the time of the first birth by T, a random variable. The population will still have its 
initial size, N(O), at time t if and• only if T > t. Hence,.by (21.10), 

P(T s t) = 1 - P(T > t) = 1 - P[N(t) = N(O)] 

= 1-PNco>(t) = 1- e-At 

i.e., T has an exponential distribution, with parameter A. Now, the probability distribution governing 
births in a time interval is independent of the starting point of the interval (the first assumption of a 
generalized Markovian birth-death process) and independent of the state of the process (the basic 
Poisson assumption). Consequently, T also measures the time from now until the next birth. In particular, 
if now is this birth, T measures the interarrival time. 

21.9 A linear Markovian birth process, with birth rate A, begins with a population N(O) = 1. (a) 
Find the expected time until the population size first equals n (n = 2, 3, ... ). (b) Is the time 
calculated in (a) the same as the time at which the expected size of the population becomes 
equal ton? 

(a) The population first reaches n in the infinitesimal time interval (t, t + dt] if and only if the state is 
n- 1 at time t [with probability Pn-1(t)] and there is exactly one birth in (t, t + dt] (with proba­
bility (n - 1)A dt + o(dt)]. Hence, the desired expected value is 

L
~ 1"-1 1 

tpn-1(t)(n -1),\ dt = > L-:-
o 1\ 1=1 1 
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(The calculation is most easily effected by multiplying the Kolmogorov equation for dpk/dt by t, 
integrating by parts, using (21.2) with the substitution z = 1- e-).• to evaluate the integral of Pk(t), and 
solving the resulting difference equation.) The result has a simple interpretation: The expected time 
to the first birth is 1/A. Now the population is 2, with an effective birth rate 2A; hence, the expected 
additional time to the next birth is 1/ZA. And so on. 

(b) According to (21.3), the expected size of the population equals n when 

or 
1 

t =-Inn 
A 

which is not the same as the expected time found in (a). For large n, 
n·•l 

1 
L-:-=lnn+y 
i-l 1 

where y = 0.5772157 · · · is Euler's constant. Hence, the percent difference between the two times 
becomes very small. 

Supplementary Problems 

21.10 A linear Markovian birth process initialized at one member experiences an average daily birth 
rate A = 0.3. Determine the probability of having a population larger than five members after 1 
week. What is the expected size of the population at that time? What would the expected size of the 
population be after 1 week if it began with 10 members? 

21.11 Solve Problem 21.10 if A = 0.6. 

21.12 Solve Problem 21.10 if the process is a Poisson birth process. 

21.13 A linear Markovian birth process initialized at 15 members has an average hourly birth rate A = 0.1. 
What is the expected size of the population after 3 h? 

21.14 A car company judges that, in the range 40 000 to 300 000 cars, sales for a new model follow a linear 
Markovian birth process. If, on the average, every 50 new cars on the road generates one new buyer 
each day, how many new models can the company expect to sell60 days after it sells its 40 OOOth vehicle? 

21.15 An advertisement for salespeople is placed in a newspaper by a department store. Based on previous 
experience, the store expects applications to arrive according to a Poisson distribution at an average rate 
of two per day, for as long as the ad runs. How many days should the ad run if the store wants to 
guarantee with 98 percent certainty that it will receive at least six applications? 

21.16 Each Monday morning, 15 min before the scheduled opening of a local bank, patrons line up at the door 
to transact business. The arrival pattern appears to follow a Poisson distribution, with A = 40 cus­
tomers per hour. Determine the probability that there are fewer than five people in line at opening time, 
assuming that no patron leaves the line once he or she arrives. 

21.17 A linear Markovian death process initialized at five members experiences an average daily death 
rate 11- = 0.1. Determine the probability of having fewer than three members in the population after a 
week. What is the expected size of the population at that time? 
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21.18 Solve Problem 21.17 if p. = 0.2. 

21.19 Solve Problem 21.17 if the process is a Poisson death process. 

21.20 It is the practice on election day to allow anyone to vote who is on line at the time polls are scheduled to 
close. At a particular polling place, the time it takes an individual to vote appears to follow an 
exponential distribution, with an expected value 1.5 min. What is the probability that it will take more 
than 12 min to accommodate those waiting to vote at the scheduled closing, if the line numbers eight 
people? (Hint: Theorem 21.1 extends to Poisson death processes.) 

21.21 A linear Markovian birth-death process initialized at one member has a daily average birth rate A = 
0.05 and a daily average death rate p. = 0.03. Determine the probability that the population will be 
extinct after 4 days. 

21.22 Solve Problem 21.21 if both A and p. are doubled. 

21.23 The population growth of an endangered species appears to follow a linear Markovian birth-death 
process. On the average, two members of the species produce one offspring every other year. The 
average life span of a member of the species is 3! years. What is the expected size of the population in 
20 years, if the current population numbers 100? 

21.24 Derive (21.9) by first solving the Kolmogorov equations for Po(t) and then successively for p,(t), 
Pz(t), .... 

21.25 Solve Problem 21.9 for a Poisson birth process. Assume an initial population of zero. 

21.26 Two independent Poisson birth processes run concurrently. Show that the result is a Poisson birth 
process, with a birth rate that is the sum of the two birth rates. 



Chapter 22 
Queueing Systems 

INTRODUCTION 

A queueing process consists in customers arriving at a service facility, then waiting in a line 
(queue) if all servers are busy, eventually receiving service, and finally departing from the facility. A 
queueing system is a set of customers, a set of servers, and an order whereby customers arrive and are 
processed. Figure 22-1 depicts several queueing systems. 

A queueing system is a birth-death process with a population consisting of customers either 
waiting for service or currently in service. A birth occurs when a customer arrives at the service 
facility; a death occurs when a customer departs from the facility. The state of the system is the 
number of customers in the facility. 

QUEUE CHARACTERISTICS 

Queueing systems are characterized by five components: the arrival pattern of customers, the 
service pattern, the number of servers, the capacity of the facility to hold customers, and the order in 
which customers are served. 

ARRIVAL PATTERNS 

The arrival pattern of customers is usually specified by the interarrival time, the time between 
successive customer arrivals to the service facility. It may be deterministic (i.e., known exactly), or 
it may be a random variable whose probability distribution is presumed known. It may depend on 
the number of customers already in the system, or it may be state-independent. 

Also of interest is whether customers arrive singly or in batches and whether balking or reneging 
is permitted. Balking occurs when an arriving customer refuses to enter the service facility because 
the queue is too long. Reneging occurs when a customer already in a queue leaves the queue and 
the facility because the wait is too long. Unless stated to the contrary, the standard assumption will 
be made that all customers arrive singly and that neither balking nor reneging occurs. 

SERVICE PATTERNS 

The service pattern is usually specified by the service time, the time required by one server to 
serve one customer. The service time may be deterministic, or it may be a random variable whose 
probability distribution is presumed known. It may depend on the number of customers already in 
the facility, or it may be state-independent. Also of interest is whether a customer is attended 
completely by one server or, as in Fig. 22-l(d), the customer requires a sequence of servers. Unless 
stated to the contrary, the standard assumption will be made that one server can completely serve a 
customer. 

SYSTEM CAPACITY 

The system capacity is the maximum number of customers, both those in service and those in the 
queue(s), permitted in the service facility at the same time. Whenever a customer arrives at a facility 
that is full, the arriving customer is denied entrance to the facility. Such a customer is not allowed to wait 

266 
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outside the facility (since that effectively increases the capacity) but is forced to leave without receiving 
service. A system that has no limit on the number of customers permitted inside the facility has infinite 
capacity; a system with a limit has finite capacity. 

QUEUE DISCIPLINES 

The queue discipline is the order in which customers are served. This can be on a first-in, 
first-out (FIFO) basis (i.e., service in order of arrival), a last-in, first-out (LIFO) basis (i.e., the cus­
tomer who arrives last is the next served), a random basis, or a priority basis. 

KENDALL'S NOTATION 

Kendall's notation for specifying a queue's characteristics is v/w/x/y/z, where v indicates the 
arrival pattern, w denotes the service pattern, x signifies the number of available servers, y represents 
the system's capacity, and z designates the queue discipline. Various notations used for three of the 
components are listed in Table 22-1. If y or z is not specified, it is taken to be oo or FIFO, respec­
tively. 

Example 22.1 An M/D/2/5/LIFO system has exponentially distributed interarrival times, deterministic service 
times, two servers, and a limit of five customers allowed into the service facility at any one time, with the last 
customer to arrive being the next customer to go into service. A D/D/1 system has both deterministic inter­
arrival times and deterministic service times, and only one server. Since system capacity and queue discipline 
are not specified, they are assumed to be infinite and FIFO, respectively. 

Table 22-1 

Queue Characteristic Symbol Meaning 

Interarrival time D Deterministic 
or M Exponentially distributed 

Service time Ek Erlang-type-k (k = 1, 2, ... ) 
distributed 

G Any other distribution 

FIFO First in, first out 
LIFO Last in, first out 

Queue discipline SIRO Service in random order 
PRI Priority ordering 
GD Any other specialized 

ordering 

Solved Problems 

22.1 Identify the customers, the servers, and those queue characteristics that are apparent, in a 
single-lane, automatic car wash establishment. 

Customers are the cars entering the establishment for the purpose of being washed. A server is the 
machinery that does the cleaning, and the single lane indicates one or more servers in series. 

Generally, car washes operate on a first-come, first-served basis; so the queue discipline is 
FIFO. The system capacity is the number of cars that can be safely handled on car wash grounds. If 
additional cars are allowed to wait on public streets for eventual entrance into the car wash grounds, 
then the system capacity is infinite. 
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22.2 Identify the customers, the servers, and those queue characteristics that are apparent, in the 
billing department of a large store. 

Customers are the charges made by patrons of the store, after these charges are received by the 
billing department but before they are completely processed. The servers are the individuals in the billing 
department who do the processing. 

Invoice processing often follows a LIFO queue discipline in that the last charge received by the 
billing department is placed on the top of the unprocessed pile and is then the first charge taken for 
processing by an idle server. Generally, there is no limit to the number of charges that can be for­
warded to the billing department; hence the system capacity is infinite. 

22.3 A new television set arrives for inspection every 3 min and is taken by a quality control engineer 
on a first-come, first-served basis. There is only one engineer on duty, and it takes exactly 4 min 
to inspect each new set. Determine the average number of sets waiting to be inspected over the 
first half-hour of a shift, if there are no sets awaiting inspection at the beginning of the shift. 

This is a D/D/1 system, with television sets as customers and the engineer as the single server. The 
interarrival time is exactly 3 min, while the service time is exactly 4 min. 

Table 22-2 

Simulated Oock, Customer in 
min Service Queue 

0 . .. ... 
3 #1 ... 
6 #1 #2 
7 #2 ... 
9 #2 #3 

11 #3 ... 
12 #3 #4 
15 #4 #5 
18 #4 #5,#6 
19 #5 #6 
21 #5 #6,#7 
23 #6 #7 
24 #6 #7,#8 
27 #7 #8,#9 
30 #7 #8, #9,#10 

Table 22-2 charts the history of the system over the first half-hour of operation. Only those instants 
at which a change occurs in the state of the system (through a customer arrival or a service completion) 
are surveyed. Observe that there are no customers in the queue from time 0 to 6, 7 to 9, and 11 to 12, 
for a total of 9 min. There is one customer in the queue from time 6 to 7, 9 to 11, 12 to 18, 19 to 21, and 
23 to 24, for a total of 12 min. Similarly, there are two customers in the queue from time 18 to 19, 21 to 
23, and 24 to 30, for a total of 9 min; and three customers in the queue from time 30 to 30, for a total of 
0 min. The average length of the queue, which is the average number of sets waiting to be inspected, 
over the first half-hour is then 

0(9) + 1(12) + 2(9) + 3(0) 
30 

1 set 

22.4 Buses arrive for cleaning at a central depot in groups of five every hour on the hour. The 
buses are serviced in random order, one at a time. Each bus requires 11 min to service 
completely, and it leaves the depot as soon as it is clean. Determine (a) the average number 
of buses in the depot, (b) the average number of buses waiting to be cleaned, and (c) the 
average time a bus spends in the depot. 
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This is a deterministic system, with buses as customers and the cleaning crew as the single server. 
Arrivals occur once an hour but in batches; the service time is 11 min. A bus is in service while it is being 

cleaned. 
Table 22-3 charts the history of the system over a 1-h period, at the epochs of arrivals and depar­

tures. Since service is provided on a random ordering basis, the particular sequence shown is one of 
many possible sequences for processing buses through the depot. The required statistics, however, are 
independent of the sequence. Furthermore, since the system renews itself each hour, the statistics that 
characterize the system over the first hour also are valid over the long run. 

Table 22-3 

Simulated Clock, Customer in 
min Service Queue 

0 #4 #3, #1, #2, #5 
11 #1 #3,#2, #5 
22 #5 #3,#2 
33 #3 #2 
44 #2 ... 
55 ... . .. 

(a) There are five customers in the facility from time 0 to 11, 4 customers from 11 to 22, 3 customers 
from 22 to 33, 2 customers from 33 to 44, and 1 customer from 44 to 55, each interval being 
11 min. In addition, there are no customers in the facility from time 55 to 60, or 5 min. The 
average number of customers in the facility is then 

5(11) + 4(11) + 3(11) + 2(11) + 1(11) + 0(5) 
60 

= 2.75 buses 

(b) The average number of customers in the queue, those buses waiting for but not yet in service, is 

4(11) + 3(11)-+- 2(11) + 1(11) + 0(16)- 1 83 b 
60 

- . uses 

(c) One bus, bus #4 in Table 22-3, is in the system for 11 min, since it is serviced as soon as it arrives. 
A second bus, bus #1 in Table 22-3, waits for 11 min before it is serviced, so it is in the system for 
22 min. Similarly,theotherthreebusesspend33,44,and55 min, respectively, in system. Theaverage 
time a bus spends in the depot is therefore 

11 + 22 + 33 + 44 + 55 3 . 
5 

= 3mm 

22.5 Simulate an M/D/2/3 system over the first 45 min of operation, if the mean interarrival time is 

3 min and if it takes servers I and II exactly 5 and 7 min, respectively, to serve a customer. 

Assume that there are no customers in the system at the beginning. 

If an exponentially distributed random variable has a mean (expected value) of 3, then the distribu­
tion function, (21.13), has 1/3 as its parameter. Using a random number generator to create values 
(in minutes and seconds) obeying such a distribution, we obtain: 3:54, 2:11, 1:26, 1:25, 0:05, 5:24, 
6:09, 0:57, 1:14, 5:57, 1:19, 2:39, 0:52, 8:54, 2:49. We take successive values to be the interarrival times 

of successive customers. Thus, customer #1 enters the system 3 min and 54 s after the process begins, 
customer #2 enters the system 2 min and 11 s after customer 1, and so on. 

The queueing process is charted in Table 22-4 for the first 45 min of operation, with only those 
times at which a customer arrives or departs surveyed. Observe that, at time 9:01, customers #2 and #3 

are in service, customer #4 is in the queue awaitmg service, and customer #5 arrives. Since the system's 
capacity is 3, customer #5 is denied entrance and never receives service. A similar situation occurs at time 
33:32. 
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Table 22-4 

Simulated Customers in Service 
Oock, 
min: sec Server I Server II Queue 

00:00 . . . . . . ... 
3:54 #1 ... 
6:05 #1 #2 ... 
7:31 #1 #2 #3 
8:54 #3 #2 ... 
8:56 #3 #2 #4 
9:01 #3 #2 #4L-#5 

13:05 #3 #4 ... 
13:54 . . . #4 ... 
14:25 #6 #4 ... 
19:25 . . . #4 ... 
20:05 . . . . . . ... 
20:34 #7 . . . ... 
21:31 #7 #8 ... 
22:45 #7 #8 #9 
25:34 #9 #8 ... 
28:31 #9 . . . ... 
28:42 #9 #10 ... 
30:01 #9 #10 #11 
30:34 #11 #10 ... 
32:40 #11 #10 #12 
33:32 #11 #10 #12L-#13 
35:34 #12 #10 ... 
35:42 #12 . . . ... 
40:34 . . . . . . ... 
42:26 #14 . . . ... 
45:00 #14 . . . ... 

Supplementary Problems 

Identify (a) the customers, (b) the server(s), and (c) those queue characteristics that are apparent, for the 
systems described in Problems 22.6 through 22.13. 

22.6 A one-counter cafeteria. 

22.7 A barber shop with two barbers, four chairs for waiting, and a local fire ordinance that sets the maximum 
number of customers in the shop at seven. 

22.8 A self-service gasoline station with three pumps. 

22.9 Airplanes requesting permission to land at a small airport. 

22.10 Automobiles at a toll plaza. 

22.11 Work forwarded to a typing pool. 
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22.12 Combat troops awaiting transportation to a rest and recreation site. 

22.13 A municipal judge hearing civil cases in court. 

22.14 Patients are scheduled for a certain test at a clinic every 5 min, beginning at 9:00 A.M. The test takes 
exactly 8 min to complete and is normally administered by a single doctor hired for this purpose. 
Whenever three or more patients are in the waiting room, a second doctor at the clinic also adminis· 
ters the test, and continues to do so until the waiting room is empty upon his completing a test. At 
that point, this second doctor takes up his previous duties until his services are required again. 
(a) At what time does the second doctor first begin administering tests and when does he first stop? 
(b) What is the average number of patients in the waiting room from 9:00 to 10:00 A.M.? (c) What is the 
average number of patients in the clinic from 9:00 to 10:00 A.M.? 

22.15 Jobs arrive at a work center three at a time, every 15 min. The center is staffed by one employee who 
takes exactly 6 min to complete each job. Jobs that are not being processed by the employee are stored 
at the work center and are then taken in random order. Assume that jobs begin arriving as soon as the 
employee reports for work and that initially there are no jobs awaiting processing from a previous 
shift. (a) What is the average number of jobs in the work center during the first 2 h of the employee's 
shift? (b) How long will the queue be after an 8-h shift? 

22.16 An orthodontist schedules patients for a routine checkup every 15 min and limits the total number of 
patients to 10 a day. It takes 12 min to examine the first patient but, because the dentist tires quickly, 
each subsequent examination takes 1 min longer than the one before it. Determine the average time 
that a patient spends in the dentist's office, both waiting and being examined, assuming that each patient 
arrives precisely when scheduled. 

22.17 How many customers are denied entrance to a D/D/1/3 queueing system in the first hour, if customers 
arrive every 4 min for a service that requires 8 min to provide? Assume that the first customer arrives 
as soon as the service facility is opened. 



Chapter 23 
M/M/1 Systems 

SYSTEM CHARACTERISTICS 

An M/M/1 system is a queueing system having exponentially distributed interarrival times, with 
parameter A; exponentially distributed service times, with parameter I.L; one server; no limit on the 
system capacity; and a queue discipline of first come, first served. The constant A is the average 
customer arrival rate; the constant I.L is the average service rate of customers. Both are in units of 
customers per unit time. The expected interarrival time and the expected time to serve one 
customer are 1/ A and 1/ J.L, respectively. 

Since exponentially distributed interarrival times with mean 1/A are equivalent, over a time 
interval T, to a Poisson-distributed arrival pattern with mean AT (see Theorem 21.1), M/M/1 systems 
are often referred to as single-server, infinite-capacity, queueing systems having Poisson input and 
exponential service times. 

THE MARKOVIAN MODEL 

An M/M/1 system is a Poisson birth-death process (see Chapter 21). The probability, Pn(t), that 
the system has exactly n customers, either waiting for service or in service, at time t satisfies the 
Kolmogorov equations, (21.1), with An =A and /.Ln = J.L, for all n. The complete solution of these 
equations, while possible, is largely unnecessary. As in Chapter 19, it is the limiting distribution that 
is of greatest interest. 

STEADY-STATE SOLUTIONS 

The steady-state probabilities for a queueing system are 

Pn ""lim Pn(t) (n = 0, 1, 2, ... ) (23.1) ,_.., 
if the limits exist. For an M/M/1 system, we define the utilization factor (or traffic intensity) as 

A 
p =- (23.2) 

I.L 

i.e., p is the expected number of arrivals per mean service time. If p < 1, then (Problem 23.7) 
steady-state probabilities exist and are given by 

Pn = p"(1- p) (23.3) 

If p > 1, the arrivals come at a faster rate than the server can accommodate: the expected queue 
length increases without limit and a steady state does not occur. A similar situation prevails 
when p = 1. 

MEASURES OF EFFECTIVENESS 

For a queueing system in steady sta,e, the measures of greatest interest are: 

L =the average number of customers in the system 
Lq = the average length of the queue 

273 
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W = the average time a customer spends in the system 
Wq =the average time a customer spends (or waits) in the queue 

W(t) =the probability that a customer spends more than t units of time in the system 
Wq(t) =the probability that a customer spends more than t units of time in the queue 

[PART II 

The first four of these measures are related in many queueing systems by 

and by Little's formulas (Problem 23.10) 

1 W=W+­
q I.L 

L,=XW 

Lq = XWq 

(23.4) 

(23.5) 

(23.6) 

The waiting-time formula, (23.4), holds whenever (as in an M/M/1 system) there is a single expected 
service time, 1/J.L, for all customers. Little's formulas are valid for quite general systems, provided 
that X denotes the average arrival rate of customers into the service facility. 

For an M/M/1 system, X = A, and the six measures are explicitly: 

2 

I == _.!!__ 
'q 1-p 

1 
W= /.L-A 

w ==-p­
q I.L-A 

W(t) = e-•tw 

Wq(t) = pe--1/W 

(t~O) 

(t ~0) 

(23.7) 

(23.8) 

(23.9) 

(23.10) 

(23.11) 

(23.12) 

Observe from (23.12) that although the time spent in the system has the exponential distribution 
(23.11), and the time spent in service is also exponentially distributed, the difference of these two 
times, which is the time spent in the queue, is not exponentially distributed. 

Solved Problems 

23.1 Show that "most of" the values of an exponentially distributed random variable are smaller 
than the mean value. 

If T has an exponential distribution, with parameter /3, the mean value of Tis 1//3. From (21.13), 

P(T ~; 1//3) = 1- e- 1 = 0.632 

P(T s 1/2/3) = 1- e- 112 = 0.393 

Thus we might say that 63 percent of the values are smaller than the mean, and, of those values, some 63 
percent are smaller than half the mean. 

23.2 Discuss the implications of having both the service times and the interarrival times exponen­
tially distributed. 
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By Problem 23.1, exponentially distributed service times imply a preponderance of shorter-than­
average servicings, combined with a few long ones. This would be the situation, for example, at banks 
where a majority of customers make simple deposits requiring very little teller time, but a few have more 
complicated transactions that consume a lot of time. Such distributions do not model satisfactorily 
situations where the service is essentially identical for each customer, as in work on an assembly line. 

Exponentially distributed interarrival times imply a preponderance of interarrival times that are less 
than the average, with a few that are very long. The net result is that a number of customers arrive in a 
short period of time, thereby creating a queue, which is followed eventually by a long interval during 
which no new customer arrives, allowing the server to reduce the size of the queue. 

As was shown in Problem 21.8, exponential distributions also possess the Markovian (or memory­
less) property: 

P(T sa+ bIT> a)= P(T s b) 

When T measures interarrival times, the implication is that the time to the next arrival is independent of 
the time since the last arrival. For service times, the implication is that the time required to complete 
service on a customer cannot be predicted by knowing (i.e., is independent of) the time the customer has 
already been in service. 

23.3 The men's department of a large store employs one tailor for customer fittings. The number 
of customers requiring fittings appears to follow a Poisson distribution with mean arrival rate 
24 per hour. Customers are fitted on a first-come, first-served basis, and they are always 
willing to wait for the tailor's service, because alterations are free. The time it takes to fit a 
customer appears to be exponentially distributed, with a mean of 2 min. (a) What is the 
average number of customers in the fitting room? (b) How much time should a customer 
expect to spend in the fitting room? (c) What percentage of the time is the tailor idle? (d) 
What is the probability that a customer will wait more than 10 min for the tailor's service? 

This is an M/M/1 system, with .\ = 24 h- 1
, 

and p = 24/30 = 0.8. 

(a) From (23.7), 

(b) From (23.9), 

11- =! min-• = 30 h- 1 

L 0.8 4 = --= customers 
1-0.8 

W = --
1
- = ~ h = 10 min 

30-24 

The result also follows from (23.5): 

1 1 ) 1 W =-L = -(4 =6h ,\ 24 

(c) The tailor is idle if and only if there is no customer in the fitting room. The probability of this 
event is given by (23.3) as 

Po= p 0(1- p) = 1(1- 0.8) = 0.2 

The tailor is idle 20 percent of the time. 

(d) From (23.12), with t = 10 min= 1 h = W, 

Wq(~) = (0.8)e-• = 0.2943 

23.4 For the system of Problem 23.3, determine (a) the average wait for the tailor's service 
experienced by all customers, (b) the average wait for the tailor's service experienced by those 
customers who have to wait at all. 
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(a) From (23.10), 

PROBABILISTIC METHODS 

Wq = __!!._ = ~ == 0.133 h = 8 min 
p,--), 30-24 

[PART II 

(b) Denote the desired average wait as W~. The proportion of arriving customers that have no wait is 
1- p [this being the probability that an arriving customer finds the system empty-see Problem 
23.3(c)]. Hence, the average wait over all arriving customers is given by 

whence 

Wq = (1- p)(O)+ pW~ 

W' ,= 1_ W. == - 1-= W = 10 min 
q p q p,-A 

23.5 A gourmet delicatessen is operated by one person, the owner. The arrival pattern of cus­
tomers on Saturdays appears to follow a Poisson distribution, with a mean arrival rate of 10 
people per hour. Customers are served on a FIFO basis, and because of the reputation of the 
store they are willing to wait for service once they arrive. The time it takes to serve a 
customer is estimated to be exponentially distributed, with an average service time of 
4 min. Determine (a) the probability that there is a queue, (b) the average size of the queue, 
(c) the expected time that a customer must wait in the queue, and (d) the probability that a 
customer will spend less than 12 min in the store. 

This is an M/M/1 system, with 

l/6 2 
p=-=-

1!4 3 

(a) The probability of having a queue is the probability of having two or more customers in the system. 
By (23.3), 

P1 = p(l- p) = j(1- j) = ~ 

Therefore, the probability of having a queue is 

(b) From (23.8), 

(c) From (23.10), 

(d) From (23.4) and (23.11), 

1 2 4 
1-po-p1= 1----=-

3 9 9 

(2/3)2 4 
Lq = l _ (2/3) = 3 customers 

2/3 
Wq = (1/4)- (1/6) 8 min 

W = 8 + 4 = 12 min 

1- W(12) =' 1- e- 12112 = 1-0.3679 = 0.6321 

23.6 Simulate the process described in Problem 23.5. 

Two sets of exponentially distributed random numbers, one having parameter 1/6 (interarrival 
times) and the second having parameter l/4 (service times), are listed in Table 23-1, with all values 
converted into minutes and seconds. As expected for exponential distributions, a majority of values in 
each set (10 out of 16, or 62.5 percent) are smaller than the theoretical means, 6 min for the interarrival 
times and 4 min for the service times. The sample averages for the times shown in Table 23-1 are 6 min 
10 s for the interarrival times and 4 min 12 s for the service times. 
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Table 23-1 

Interarrival Service 
Times Times 

3:30 0:16 
3:30 0:01 
6:36 2:37 

11:45 10:19 
5:32 11:53 
4:27 2:57 
8:17 1:02 

15:24 4:03 
3:29 0:59 
3:12 0:09 
2:01 9:57 

13:37 3:44 
0:40 7:12 
0:12 0:10 
2:42 11:51 

13:43 0:04 

Table 23-2 

Simulated Customer in 
Oock Service Queue 

00:00 . . . ... 
3:30 #1 (0:16) ... 
3:46 . . . ... 
7:00 #2 (0:01} ... 
7:01 . . . ... 

13:36 #3 (2:37) ... 
16:13 . . . ... 
25:21 #4 (10:19} ... 
30:53 #4 (4:47) #5 (11:53} 
35:20 #4 (0:20) #5 (11:53}, #6 (2:57} 
35:40 #5 (11:53} #6 (2~57} 
43:37 #5 (3:56} #6 (2:57}, #7 (1:02} 
47:33 #6 (2:57} #7 (1:02} 
50:30 #7 (1:02} ... 
51:32 . . . ... 
59:01 #8 (4:03} 
62:30 #8 (0:34} #9 (0:59} 
63:04 #9 (0:59} ... 
64:03 . . . ... 
65:42 #10 (0:09) ... 
65:51 . . . ... 
67:43 #11 (9:57} ... 
77:40 . . . ... 
81:20 #12 (3:44) ... 
82:00 #12 (3:04) #13 (7:12} 
82:12 #12 (2:52} #13 (7:12), #14 (0:10) 
84:54 #12 (0:10} #13 (7:12}, #14 (0:10},#15 (11:51} 
85:04 #13 (7:12} #14 (0:10), #15 (11:15) 
92:16 #14 (0:10} #15 (11:51} 
92:26 #15 (11:51} ... 
98:37 #15 (5:40) #16 (0:04) 
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We assign the first interarrival time and the first service time to customer #1, the second interarrival 
time and the second service time to customer #2, and so on. The queueing process is then charted in 
Table 23-2, where the simulated clock times listed are those at which a new customer arrives or a current 
customer is completely served and departs. The times in parentheses are the amounts of service time 
still required by the corresponding customers. 

Observe how the queue builds when a long service time is matched with a succession of short 
interarrival times, and how it ebbs when a long interarrival time allows the server to accommodate 
customers currently in the system. This ebb and flow of queue size is characteristic of M/M/1 systems 
when the mean service time is shorter than the mean interarrival time. 

23.7 Derive (23.3), which gives the steady-state probabilities for an M/M/1 system having p < 1. 

Equations (21.1), with dp,Jdt = 0 (steady state), 1-tn = ~J-, and .\" = .\, become the balance equations 

Pn+1 = (p + 1)p,.- PPn-1 

p1= ppo 

(n = 1, 2, ... ) (1) 

(2) 

Equation (2) gives P1 in terms of po, and all other steady-state probabilities can also be obtained in 
terms of Po by solving (1) recursively: 

and, in general, 

n == 1: 

n== 2: 

n== 3: 

Pz == (p + l)p1- PPo == (p + 1)(ppo)- ppo = P2Po 

P3 = (p + l)pz- PP1 == (p + 1)(P2Po)- p(ppo) = p3po 

P4 == (p + l)p3- PPz == (p + 1)(P3Po)- p(P2Po) = P4Po 

Pn = p"po 

Since the sum of the probabilities must equal unity and 0 < p < 1, 

~ ~ ( 1 ) 
1 = L Pn == Po L p" = Po y=----

n=O n=O P 

Therefore, po = 1- p, and (3) becomes (23.3). 

23.8 Derive (23. 7). 

(3) 

Using the definition of expected value and the results of Problem 23.7, we calculate the expected 
number of customers in an M/M/1 system as. 

~ ~ ~ d(~ ) 
L = L np" = L n (1- P )p" == p(l- P) L np"-1 = p(1 - P) d L p" 

n=O n=O n=O P n=O 

d ( 1 ) 1 p =p(l-p)- -- =p(1--p)~=--dp 1 - p (1- p) 1- p 

23.9 Derive (23.4). 

Denote the time a customer spends in the system by T, the time spent in the queue by Tq, and the time 
spent being served by T.. All three are random variables, with 

T=Tq+T, 

Therefore, 

(1) 

The expected service time is E(T.) = 1/~-t. We are denoting E(T) by Wand E(Tq) by Wq, so (1) coincides 
with (23.4). 
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23.10 Deduce Little's formulas intuitively. 

During the "average customer's" time in the system, W, new customers arrive at an average rate .\; 
so, at the end of W time units, .\ W new customers are expected in the system. That is, as the original 
customer leaves the system, that customer can expect to see .\ W other customers remaining in the 
system. Since the queue statistics are independent of time in the steady state, L = .\ W always. 

Equation (23.6) is deduced similarly, by replacing W, L, and the word "system" by Wq, Lq, and the 
word "queue," respectively, in the preceding paragraph. 

23.11 For an M/M/1 system, does Lq = L- 1? 

No: 

~ ~ ~ ~ 

L= L npn= L np" L., = L (n - 1)p,. = L (n- 1)p,. 
n-O n-1 n-2 n=l 

and so 
~ 

L-L.,= LPn=1-po=p 
n-1 

23.12 Show that Sk = Tt + T2 + · · · + Tk. the sum of k mutually independent, exponentially dis­
tributed random variables, each with parameter J.L, has the Erlang type k, or gamma, distri­
bution~ 

(t ~0) (23.13) 

Interpret the T -variables as the first k interarrival times in a Poisson birth process having initial 
population zero. Then the population at time t is k or more if and only if Sk s t; that is, 

~ (p.t)" 
P(Skst)=P(N(t)2:.k)= L -,-e-,.' 

n-k n. 

where we have made use of (21.9), with .\ replaced by 11-· 

(1) 

One way to prove the equivalence of (1) and (23.13) is to show that they have the same first 
derivative (the probability density function for Sk) and the same value at t = 0 (which they obviously 
do). Differentiating (23.13), · 

Differentiating (1), 

and the proof is complete. 

23.13 Derive (23.12). 

To obtain the distribution of Tq, the time a customer spends in the queue of an M/M/1 system, use 
conditional probabilities (Problem 17.5). H an arriving customer finds the system in state 0, then Tq = 
0; if the customer finds the system in state k (k = 1, 2, ... ), then, because of the memoryless property 
(Problem 23.2) of the current service time, Tq = Sk (see Problem 23.12). Consequently, for 12:.0, 
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Wq(t) ~ P(Tq > t) = 1- P(Tq s t) = 1- [poP(O s t) + ~~ pkP(Sk s t)] 

= 1- [(1- p)(1) + ~1 pk(l- p) L' ~k:k;)1

! e-'"
7 dT] 

= p- p~J-(1- p) L' [~1 ~t:);~!
1

]e-'"T dT= p- p~J-(1- p) L e'"PTe-'"
7 dT 

Supplementary Problems 

23.14 The take-out counter at an ice cream parlor is serviced by one attendant. Customers arrive according to 
a Poisson process, at a mean arrival rate of 30 per hour. They are served on a FIFO basis, and, because 
of the quality of the ice cream, they are willing to wait if necessary. The service time per customer 
appears to be exponentially distributed, with a mean of 1~ min. Determine (a) the average number of 
customers waiting for service, (b) the amount of time a customer should expect to wait for service, (c) 
the probability that a customer will have to spend more than 15 min in the queue, and (d) the probability 
that the server is idle. 

23.15 A barber runs a one-man shop. He does not make appointments but attends customers on a first-come, 
first-served basis. Because of the barber's reputation, customers are willing to wait for service once they 
arrive; arrivals follow a Poisson pattern, with a mean arrival rate of two per hour. The barber's service 
time appears to be exponentially distributed, with a mean of 20 min. Determine (a) the expected 
number of customers in the shop, (b) the expected number of customers waiting for service, (c) the 
average time a customer spends in the shop, and (d) the probability that a customer will spend more than 
the average amount of time in the shop. 

23.16 The arrival pattern of cars to a single-lane, drive-in window at a bank appears to be a Poisson process, 
with a mean rate of one per minute. Service times by the teller appear to be exponentially distributed, 
with a mean of 45 s. Assuming that an arriving car will wait as long as necessary, determine (a) the 
expected number of cars waiting for service, (b) the average time a car waits for service, (c) the average 
time a car spends in the system, and (d) the probability that there will be cars waiting in the street if 
bank grounds can hold a maximum of five automobiles. 

23.17 Aircraft request permission to land at a single-runway airport on an average of one every 5 min; the 
actual distribution appears to be Poisson. Planes are landed on a first-come, first-served basis, with 
those not able to land immediately due to traffic congestion put in a holding pattern. The time required 
by the traffic controller to land a plane varit:s with the experience of the pilot; it is exponentially 
distributed, with a mean of 3 min. Determine (a) the average number of planes in a holding pattern, 
(b) the average number of planes that have requested permission to land but are still in motion, (c) the 
probability that an arriving plane will be on the ground in less than 10 min after first requesting 
permission to land, and (d) the probability that there are more than three planes in a holding pattern. 

23.18 A typist receives work according to a Poisson process, at an average rate of four jobs per hour. Jobs 
are typed on a first-come, first-served basis, with the average job requiring 12 min of the typist's time; 
the actual time per job appears to be exponentially distributed about this mean. Determine (a) the 
probability that an arriving job will be completed in under 45 min, (b) the probability that all jobs will 
have been completed by the typist at the end of the business day, and (c) the probability that a job will 
take less than 12 min to complete once the typ1st begins it. 
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23.19 As mechanics need parts for automobiles they are servicing in a repair shop, they go to the parts 
department of the shop and requisition the needed material. Mechanics are accommodated by the 
single attendant in the parts department on a first-come, first-served basis. Mechanics arrive according 
to a Poisson process, with a mean rate of 35 per hour, and they wait their turn whenever the parts 
attendant is busy with someone else. On the average, it takes the parts attendant 1 min to serve a 
mechanic, with the actual service time exponentially distributed about this mean. What is the expected 
hourly cost to the repair shop to have its mechanics obtain parts, if a mechanic is paid $12 an hour? 

23.20 Buses arrive at a service facility according to a Poisson process, at a mean rate of 10 per day. The 
facility can service only one bus at a time, the service time being exponentially distributed about a mean 
of 1/12 day. It costs the bus company $200 a day to operate the service facility and $50 for each 
day a bus is tied up in the facility. By purchasing newer equipment that will raise the daily operating 
cost of the service facility to $245, the bus company can decrease the mean service time to 1!15 day. Is 
such an update economically attractive? 

23.21 Jobs arrive at an inspection station according to a Poisson process, at a mean rate of two per hour, and 
are inspected one at a time on a FIFO basis. The quality control engineer both inspects and makes 
minor adjustments, if that is all that is required to pass a job through this phase. The total service time 
per job appears to be exponentially distributed, with a mean of 25 min. Jobs that arrive but cannot be 
inspected immediately by the engineer must be stored until the engineer is free to take them. Each job 
requires 10 fe of floor space while it is in storage. How much floor space should be provided, if the 
objective is to have sufficient storage space within the quality control section 90 percent of the time? 

23.22 Determine the effect on L, Lq, and W of doubling both A and IL in an M/M/1 system. 

23.23 Find the conditional probability that there are n ~ 2 customers in an M/M/1 system, given that there is a 
queue. 

23.24 Determine the expected number of customers in the queue of an M/M/1 system when there is a 
queue. (Hint: Use the results of Problem 23.23.) 

23.25 Derive (23.8) without the use of Little's formula, by calculating directly the expected number of 
customers in the queue. 

23.26 Derive the balance equations (see Problem 23.7) directly by using the fact that in the steady state the 
expected rate of transitions of the system into state n must equal the expected rate of transitions out of 
state n. (Note that the expected rates of customers into and out of state n, An = A and /Ln = JL, are not 
in general equal.) 

23.27 Use the generating function approach suggested in Problem 21.7 to solve the balance equations for an 
M/M/1 system. 

23.28 Without using Problem 23.26, verify that the mean rate of departure from a steady-state M/M/1 system 
equals the mean rate of arrival into the system. 



Chapter 24 
Other Systems with Poisson-Type Input 
and Exponential-Type Service Times 

STATE-DEPENDENT PROCESSES 

In many queueing situations, the number of customer arrivals does not constitute a strict Poisson 
process, with constant parameter A; instead, it seems to follow a Poisson-like process in which A 
varies according to the number of customers in the system. It may also be the case that departures 
from the system do not occur at a constant mean rate JL, as they would for a single server with an 
exponentially distributed service time; rather, the departures are as though there were a single server 
having an exponential-like service time distribution for which JL varies according to the state of the 
system. Such queueing processes can be modeled as generalized Markovian birth-death processes 
(Chapter 21), for which A" !H and p." !H give, respectively, the expected numbers of arrivals and 
departures in a small time interval !H, if the system is in state n at the beginning of the interval. The 
steady-state probabilities for these processes are found to satisfy 

or (24.1) 

in which p0 is determined by the condition that the sum of all the probabilities be unity. This sum 
converges provided the A's are not too large with respect to the p. 's. In particular, the existence of a 
steady state is assured if 

for all large n. 

LITTLE'S FORMULAS 

Little's formulas, (23.5) and (23.6), hold for the above-described processes, where 
~ 

A,=~ A"p" (24.2) 
n=O 

is the average arrival rate of customers into the service facility. 
In any queueing system, the expected number of customers in the system is 

and the expected number of customers in the queue is 
~ 

Lq = ~ [max {n - Sn, O}]pn 
n=O 

where s" i_s the number of servers available in state n. If it is possible to evaluate L and Lq, then, 
knowing A, we can at once find Wand Wq from Little's formulas. 

282 
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BALKING AND RENEGING 

A balk occurs when a customer arrives at but refuses to enter into a service facility, because the 
queue is too long. Designate the probability that an arriving customer will balk when there are n 
customers already in the system by the balking function b(n ). The probability that an arriving 
customer will not balk is then 1 - b(n ). If the arrival pattern to the service facility is state­
independent, with mean arrival rate A, then the expected rate of customers into the service facility is 

An= [1- b(n)]A (24.3) 

which is state-dependent. (See Problem 24.4.) 
Reneging occurs when a customer leaves the queue after joining it, because the waiting time for 

service has become too long. The net effect is to increase the rate at which customers are processed 
through the system. An M/M/1 system with reneging is modeled by a state-dependent process for 
which 

JLn = JL + r(n) 

Here, r(n) is a reneging function defined by 

( ) I. =-P_,{""a-"c..::u.:..st:...;:o..::m::..e:..:rc....r....:e..::n:...;:e....,g..::es:;....;:;:in:::....:.:a....:t....:imc::..:.e_i:..:n"-:te:..::rv"-""al=-~::...;...t .... I :...:.n_c:..::u..::s.:....to:..::m=er....:s....:i::..nc....t..::h:..::e....:s:...~:y..:.s.:...:te::..m=} rn=tm- -
At-+0 ~t 

Since no reneging occurs when there is no queue, r(O) = r(1) = 0. (See Problem 24.10.) 

M/M/s SYSTEMS 

(24.4) 

An M/M/s system is a queueing process having a Poisson arrival pattern; s servers, with s 
independent, identically distributed, exponential service times {which do not depend on the state of 
the system); infinite capacity; and a FIFO queue discipline. The arrival pattern being state­
independent, An = A for all n. The service times associated with each server are also state­
independent; but since the number of servers that actually attend customers (i.e., are not idle) does 
depend on the number of customers in the system, the effective time it takes the system to process 
customers through the service facility is state-dependent. In particular, if 1/p. is the mean service 
time for one server to handle one customer, then the mean rate of service completions when there 
are n customers in the system is 

JLn = {np. 
SJL 

Steady-state conditions prevail whenever 

(n=0,1, ... ,s) 
(n = s + 1, s + 2, ... ) 

A 
p ==-<1 

SJL 

The steady-state probabilities are given by (24.1) as 

_ [ s'p'+1 
' (sp )n]-1 

Po- s !(1- p) + ~ ~ 
and 

(n = 1, ... , s) 

Pn = 
s•pn 
'""$!Po (n = s + 1, s + 2, ... ) 

(See Problem 24.5.) With p0 given by (24.5), 

(24.5) 

(24.6) 
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(24.7) 

Once Lq is determined, Wq, W, and L are obtained from (23.6), (23.4), and (23.5), respectively, 
with A = A. Equation (23.4) applies here, because, regardless of the state of the system, the expected 
service time for each customer has the fixed value 1/ p.. Furthermore, 

{ 
( )• [1 -~LI(s-1-sp)]} 

W(t) = e-j£1 1 + sp Po :-:--e----=--~ 
s!{l-- p)(s -1- sp) 

W(t)= (sp)'po e-s~£1(1-p) 
q s!{l-p). (t ~ 0) 

(See Problems 24.5 and 24.6.) 

M/M/1/ K SYSTEMS 

(t ~o) (24.8) 

(24.9) 

An M/M/1/K system can accommodate a maximum of K customers in the service facility at the 
same time. Customers arriving at the facility when it is full are denied entrance and are not 
permitted to wait outside the facility for entrance at a later time. If A designates the mean arrival 
rate of customers to the service facility, then the mean arrival rate into the facility when the facility is in state 
n is 

(n =' 0, 1, ... , K- 1) 
(n =' K, K + 1, ... ) 

A steady state is always attained, whatever the value of p =AI p., with probabilities given by (24.1) 
as Pn = 0 (n > K) and, for n = 0, 1, ... , K, 

I 
p"(1-- Pl 1- PK+I 

Pn = 
1 

K+l 

(p ;i 1) 

(p = 1) 

The measures of effectiveness are 

L= 

p (K + 1)pK+l 
1- p - -1 - PK+I (p ;t. 1) 

K 
2 

(p = 1) 

with W, Wq, and Lq obtained from (23.5), (23.4), and (23.6), respectively, wherein 

A= A(1- PK) 

(See Problem 24.7.) 

M/M/s/ K SYSTEMS 

(24.10) 

(24.11) 

(24.12) 

An M/M/s/K system is a finite-capacity system with s servers having independent, identically 
distributed, exponential service times {which do not depend on the state of the system). Since the 
capacity of the system must be at least as large as the number of servers, s :5 K. For such a system, 

(n = 0, 1, ... , K- 1) 
(n = K, K + 1, ... ) 

JL = {np. 
n SJL 

(n = 0, 1, ... , s) 
(n = s + 1, s + 2, ... ) 

Steady-state probabilities exist for all values of p = A/sp., and are given by (24.1) as 
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1 

[s'p'+1(1-pK-•)+ • (sp)"]- 1 

s!{l-p) ~ n! 

Po= [s' • s" ]-1 
s! (K- s)+ ~n! 

(p -:J 1) 
(24.13) 

(p = 1) 

and 

(sp)" 
'"1i!Po (n=1,2, ... ,s) 

Pn = s'p" 
7Po (n = s + 1, ... , K) (24.14) 

0 (n = K + 1, K + 2, ... ) 

The measures of effectiveness are 

(24.15) 

with Wq, W, and L obtained from (23.6), (23.4), and (23.5), respectively; X is again given by 
(24.12). (See Problem 24.8.) An M/M/1/K system is a special M/M/s/K system with s = 1 {see 
Problem 24.28). 

Solved Problems 

24.1 A grocery store has a single checkout counter attended by a cashier who also functions as the 
bagger when the store is not too busy. Customers arrive at the checkout counter according to 
a Poisson process, at a mean rate of 30 per hour. The time required for the cashier to total a 
customer's purchases, bag the groceries, and make change is exponentially distributed, with a 
mean of 2 min. Whenever there are three or more customers at the counter (including the 
customer in service), a second employee of the store is instructed to assist the cashier as a 
bagger. When the two employees work together, the service time for a customer remains 
exponentially distributed, but with a mean of 1 min. Determine (a) the average number of 
customers at the checkout counter at the same time, (b) the length of time a customer should 
expect to spend at the checkout counter, and (c) the length of time a customer should expect 
to wait on line before having his or her purchases totaled. 

Throughout the process the arrival rate remains state-independent at An= A= 30 h-1
• The service 

times, however, are state-dependent. When there are fewer than three customers at the counter, the 
mean service time is 2 min; hence the mean service rate is 30 h- 1

• When there are three or more 
customers at the counter, the mean service time is 1 min; hence the mean service rate increases to 
60 h- 1

• Thus 

(n = 1, 2) 
(n = 3, 4, ... ) 

Note that, when a new arrival changes the state of the system from 2 to 3, the customer in service is 
instantly subject to the new exponential distribution (the "memoryless" property). 

It follows from (24.1) that 

Ao 30 
Pt =-Po=-Po= Po 

#Lt 30 

A2 30 I 
p3= IL3P2= 60 (Po)=2Po 
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and, in general, 

(n ~2) 

To find po, we solve 
~ ~ 

1 = L Pn = po+ Pt + L Pn = 2po+ L (!)"-2Po 
n-O n=2 n=2 

= 2po+ 2po = 4po 

obtaining Po= 1/4. Therefore, 

Pn = {~!)" (n = 0, 1) 
(n = 2, 3, ... ) 

The generating function for these probabilities is 

(a) ~ dF' 28 L = L np" =- = -= 1.75 customers 
n~o dz z=l 16 

(b) Since X= A= 30 h- 1
, 

W =!:;. = .!:75 
= 0.05833 h = 3.5 min 

A 30 

[PART II 

(c) Because the bagger and the cashier work together, the number of servers is state-independent at 
Sn = 1. Then, as in Problem 23.11, 

and 

~ 

4 = L (n- 1)p" = L- (1-- Po)= 1.75-0.75 = 1.00 customer 
n=2 

W: = I:_q = l.OQ = 0.0333 h = 2 min 
q A 30 

Observe that the average service time per customer is 

w -- wq = 1.5 min 

24.2 Rework Problem 24.1 if the second employee comes in as a separate, equally efficient 
cashier-bagger, working in parallel with the first. Whenever only two customers remain, the 
momentarily free employee leaves the checkout counter, to return whenever the state again 
reaches 3. Would this arrangement be preferable from the customers' point of view? 

The An and /Ln are the same as in Problem 24.1; hence, the state probabilities, and along with them 
L and W, remain unchanged. However, the number of servers is now state-dependent, with 

and so 

(n = 0, 1, 2) 
(n = 3,4, ... ) 

Lq = 1p2 + l: (n - 2)Pn = P2 + ± (n- 2)Pn + P1 
n=3 n=l 

= P2 + L- 2(1- po) + Pt = ~ + 1.75- 2(i) + ~ = 0.75 customer 

Wq = 
0365 

= 0.025 h = 1.5 min 

As compared with the situation in Problem 24.1, customers wait an average of 0.5 min less for 
service and spend an average of 0.5 min more in service. Probably they would favor such a tradeoff. 
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24.3 Derive (24.1). 

Setting dp,Jdt = 0 (steady-state conditions) in the Kolmogorov equations for a generalized Markov­
ian birth-death process, (21.1), we obtain, after rearrangement, 

(n = 1, 2, ... ) 

Ao 
Pt = /Lt Po 

Equation (2) gives Pt in terms of po. Solving (1) iteratively, we also find 

and, in general, 

At+ /Lt Ao At+ /Lt Go ) Ao At..\o 
P2=---p~--Po=--- -po --po=--po 

/L2 IL2 /L2 I /L2 /L2/Ll 

..\2+/L2 At 
p3=---P2--Pt 

/L3 /L3 

_ ..\2 + /L2 {A tAo ) At Go ) _ ..\2..\1..\o ---- --po -- -po ----Po 
/L3 /L2/Ll /L3 I /L3/L2/Ll 

or 

(1) 

(2) 

24.4 The owner of a small but busy newspaper and tobacco store serves customers on an average of 
one every 30 s, the actual distribution being exponential. Customers arrive according to a 
Poisson process, at a mean rate of three per minute, and they can wait for service if the owner 
is busy with another customer. A number of customers choose not to wait and take their 
business elsewhere. The probability that an arriving customer balks is n/3, where n is the 
number of customers already in the store. How much profit must the shop owner expect to 
lose from customers who take their business elsewhere, if the average profit per customer is 
30¢. 

Since the probability of balking is 1 when there are three customers in the store, the store never 
experiences more than three customers at the same time, and the only feasible states are 0, 1, 2, and 
3. We take the balking function to be 

b(n) = {~13 (n = 0, 1, 2, 3) 
(n = 4, 5, ... ) 

The mean arrival rate of customers to the store is ..\ = 3, whence, by (24.3), the mean rates into the store 
are 

Ao = (1- ~)(3) = 3 At = (1-l)(3) = 2 

and ..\" = (1- 1)(3) = 0 when n = 3, 4,. . . . The service rate is state-independent, with /Ln = JL = 2 cus­
tomers per minute. From (24.1), 

Ao 3 
Pt= IL

1
Po=2Po 

At 2(3 ) 3 P2 = - Pt = 2 2Po = 2Po 
/L2 

P - ..\2 ""' - l(Jp ) - Jp 3--r•- 2 2 0 - 4 0 
/L3 

and Pn = 0 (n = 4, 5, ... ). The requirement that the probabilities sum to 1 gives Po= 4/19. Hence, 

6 
Pt= 19 

The expected rate at which customers balk is 

3 
p 3 = 19 Pn = 0 (n >3) 
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~ 4 . 6 6 3 L (A -An)Pn = (3-3) 
19 

+(.3-2) 
19 

+ (3-1) 
19 

+ (3-0) 
19

+0+0+ • · · 
n-o 

= 1.4211 customers per minute 

so that the expected loss rate is 

(30~)(1.4211) = 42.633 ~/min= $25.58 per hour 

[PART II 

24.5 A small bank has two tellers, who are equally efficient and who are each capable of handling 
an average of 60 customer transactions per hour, with the actual service times exponentially 
distributed. Customers arrive at the bank according to a Poisson process, at a mean rate of 
100 per hour. Determine (a) the probability that there are more than three customers in the 
bank at the same time, (b) the probability that a given teller is idle, and (c) the probability that 
a customer spends more than 3 min in the bank. 

This is an M/M/2 system, with A = 100 and IL = 60. Since 

100 5 
p =---=-< 1 

2(60) 6 

steady-state conditions will prevail eventually. Using (24.5), we calculate 

1 - 2
2
(5/6)

3 2 
(5/3)" -- 125 1 (5)

0 
1 (5)

1 
1 (5)2-Po-2![1-(5/6)]+~,--,;-r---18+0! 3 +1! 3 +2! 3 - 11 

or Po= 1/11 = 0.0909. The remaining steady-state probabilities are then determined from (24.6) as 

(5/3)
1 

( 1 ) PI== l!- 11 = 0.1515 

p2 = (5/3:t (_!__) = 0 1263 
2! 11 -

P3 = 22<;(6f U1) = 0.1052 

5 
P4 = PP3 '= 6 (0.1052) = 0.0877 

and so on. 

(a) 1- (po +PI+ P2 + p3) = 1- (0.0909 + 0.1515 + 0.1263 + 0.1052) = 0.5261 

(b) A given teller is idle if there are no customers in the bank or if there is one customer in the bank 
and that customer is being served by the other teller. 

Po+ !p1 = 0.0909 + !(0.1515) = 0.1667 

(c) Using (24.8), we find the probability that a customer will spend more than 3 min, or 1/20 h, in the 
bank to be 

W (_!_) - -60(1120){ + (5/3 )2(1/11 )[1- e -60(I/20l[2-I-<SiJll]} -
20 - e 1 2![1- (5/6)][2- 1- (5/3)] - 0.4113 

24.6 A state department of transportation has three safety investigation teams who are on call con­
tinuously and whose job it is to analyze road conditions in the vicinity of each fatal accident 
on a state road. The teams are equally efficient; each takes on the average 2 days to investigate 
and report on an accident, with the actual time apparently exponentially distributed. The 
number of fatal accidents on state roads appears to follow a Poisson process, at a mean rate of 
300 per year. Determine L, Lq, W, and Wq for this process and give meaning to each of these 
quantities. 

This is an M/M/3 process, with A= 300 accidents per year, JL = 365/2 = 182.5 reports per team per 
year, and 
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300 40 
p = 3(182.5) 73 

To evaluate Lq by (24. 7), we must first determine po. From (24.5), 

1 3
3
(40/73t 

3 

1 ( 300 )" 
Po= 3![1- (40/73)] + ~ n! 182.5 

= 0.89737+ ~~ (1~~5r + :, (1~~5r + i, u:5r + ;, G~~5r = 5.63263 

Hence Po= 1/5.63263 = 0.177537. Then, 

Lq- 33(40/73t(0.177537) 0.3524 
- 3! £1- (40!73W 

On the average, the department has a backlog of 0.3524 accidents. 
Using (23.6), with X = A = 300, we have 

1 
Wq = 

300 
(0.3524) = 0.001175 year= 0.429 day 
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There elapses, on the average, slightly less than ~day between a fatal accident and the start of its investi­
gation. 

It follows from (23.4) that 

1 
W = 0.001175 + 

182
_
5 

= 0.00f654 year= 2.429 days 
I 

On the average, it takes slightly less than 2! days for te department to complete its work once a fatal 
accident has occurred. 1 

Finally, we determine from (23.5) that 

L = 300(0.006654) = ~.996 accidents 

On the average, the department has nearly two cases ulnder its jurisdiction, awaiting final action. 

24.7 A service station on a rural road has a single pu.-np from which to dispense gasoline. Cars 
arrive at the station for gasoline according to a i Poisson process, at a mean rate of 10 per 
hour. The time required to service a car appears Ito be exponentially distributed, with a mean 
of 2 min. The station can accommodate a maxirhum of four cars, and local traffic laws pro­
hibit cars from waiting on the road. Determine (a) the average number of cars simul­
taneously at the station; (b) the average time a customer must wait for service once access to 
the station is achieved; (c) the average rate at which revenue is lost from customers' taking 
their business elsewhere when the station is full, if the average sale is $15.00. 

This is an M/M/l/4 system, with 

/Ln = JL =! rnin- 1 = 30 h-1 

The mean arrival rate to the station is A = 10 h- 1
; so the mean arrival rates into the station are 

(n = 0, 1, 2, 3) 
(n = 4, 5, ... ) 

The traffic intensity offered to the system is p ""'A/JL = 1/3. 

(a) From (24.11), 

1 5(1/3)5 

L = 2- 1 _ (l!W = 0.4793 car 

(b) To obtain Wq, we use (23.4), after first determining p4, X, and W from (24.10), (24.12), and (23.5), 
respectively. Here, 
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Hence X = 10(1- 0.008264) = 9.917 h-\ which represents the mean rate at which cars actually 
enter the station. Then 

w =' Q:4793 = 0 04833 h 9.917 . 

1 
Wq =o 0.04833- 30 = 0.015 h = 54 S 

(c) Cars are denied entrance to the station at the mean rate 

A- X= 10-9.917 = 0.083 h- 1 

so that the mean rate of revenue loss is (15)(0.083) = $1.25 per hour. 

24.8 A self-service car wash has four stalls in which customers can clean and wax their automobiles 
and room to accommodate a maximum of three additional cars when all stalls are full. Cus­
tomers arrive at the car wash according to a Poisson process, at a mean rate of 15 per 
hour. If there is no room for them on the grounds of the car wash, arriving customers must 
go elsewhere. The time required to service a car appears to be exponentially distributed, 
with a mean of 12 min. Determine (a) the average number of cars at the car wash at any 
given time, and (b) the expected rate at which cars are denied entrance to the car wash. 

This is an M/M/4/7 system, with 

(a) To determine L we use (23.5), after first calculating fJo, Lq, p,, X, Wq, and W sequentially. From 
(24.13), 

(b) 

·By (24.15), 

Lq = ~;{~/4'W [1- (3/4)3
- (1/4)(3)(3/4f](0.04499) = 0.4768 car 

Using (24.14), we find that 

and, from (24.12), 

Finally, 

p, = (4t~~/4Y: (0.04499) = 0.06406 

X = 15(1-- 0.06406) = 14.04 h-1 

w: = :q = 0.476~ = 0.033% h 
q A 14.04 

W = Wq + _! = 0.033% + 0.2 = 0.233% h 
IL 

L = X W = (14.04)(0.233%) = 3.285 cars 

A -X = 15- 14.1)4 = 0.% cars per hour 

24.9 Customers arrive at a barber shop at an average rate of five per hour, the actual arrivals being 
Poisson-distributed. There is one barber on duty at all times and there are four chairs for 
customers who arrive when the barber is busy. Local fire ordinances limit the total number 
of customers in the shop at the same time to a maximum of five. Customers who arrive when 
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the shop is full are denied entrance and their business is presumed lost. The barber's service 
time is exponentially distributed, but the mean changes with the number of customers in the 
shop. As the shop fills, the barber tries to speed service, but actually becomes less efficient, 
as shown in the following table: 

Number in Shop 1 2 3 4 5 

Mean Service Time, min 9 10 12 15 20 

Determine (a) the average number of people in the shop at the same time, (b) the expected 
time a customer must wait for service, and (c) the percentage of time the barber is idle. 

This is a finite-capacity system, but it is not an M/M/1/5 system, because the service times are 
state-dependent. Nonetheless, the measures of effectiveness can be calculated directly, once the 
steady-state probabilities are known. For this system, the mean arrival rate to the shop is A= 5 h- 1 = 
(1/12) min- 1

; so the mean arrival rates into the shop are, in min-I, 

(n = 0, 1, 2, 3, 4) 
(n = 5,6, ... ) 

The mean service rates are, in min-1: #L1 = 1/9, IJ-2 = 1/10, #LJ = 1/12, #L4 = 1/15, #L5 = 1/20. The steady­
state probabilities are given by (24.1) as 

Ao 3 
P1 = #LI Po= 4 Po 

AI 5 
p2=-pl =-Po 

#L2 8 

A2 5 
p3=-p2=-Po 

#L3 8 
Pn = 0 (n >5) 

and, normalizing, we find 
~ 

1 = ~ Pn = 5.0833Po or po= 0.1%7 
n-o 

Hence, P1 = 0.1475, P2 = 0.1230, P3 = 0.1230, P4 = 0.1537, and P5 = 0.2561. 

5 

(a) L = l: npn = 1(0.1475) + 2(0.1230) + 3(0.1230) + 4(0.1537) + 5(0.2561) = 2.658 customers 
n-1 

(b) We use (23.6) to determine Wq, after first calculating X and Lq. By (24.2), 

X = ± AnPn = 1; (1- P5) = 0.06199 min- 1 

n-o 

and (sn = 1) 
5 

Lq = L (n- 1)pn = (1)(0.1230) + (2)(0.1230) + (3)(0.1537) + (4)(0.2561) 
n-2 

= 1.8545 customers 

Therefore, 

w: 1.8545 30 31 . 
q = 0.06119 = · mm 

(c) The barber is idle when there are no customers in the shop. This occurs with probability po = 
0.1%7, or just under 20 percent of the time. 

24.10 The service station described in Problem 24.7 is popular because it sells gas at a slightly lower 
price than its competitors. The price, however, is not sufficiently low to compensate for a 
long wait in line; so customers tend to renege according to the reneging function 
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(n = 0, 1) 
(n = 2, 3, 4) 

[PART II 

Determine (a) the average number of cars in the station at any time, and (b) the expected number 
of cars that renege each hour. 

This system is an M/M/1/4 system with reneging. Alternatively, it can be viewed as an M/M/1 system 
with reneging, and with forced balking whenever the state of the system reaches 4. In this latter approach, 
the balking function is 

b(n) = {~ (n = 0, 1, 2, 3) 
(n = 4, 5, ... ) 

Either way, the mean arrival rate to the station is A = 10 h-I and the mean rate of attending to customers 
is l.t = 30 h-\ as in Problem 24.7. It follow& that the mean arrival rates of customers into the station are 

(n = 0, 1, 2, 3) 
(n = 4,5, ... ) 

The mean rates for processing customers through the system, either by serving them or having them renege, 
are 

1.t1 = l.t + r(l) = 30 + 0 = 30 

~.tz = l.t + r(2) = 30 + 2.718 = 32.718 

/.tJ = 1.t + r(3) = 30 + 4.482 = 34.482 

/.t4 = l.t + r(4) = 30 + 7.389 = 37.389 

We use (24.1) to determine the steady-state probabilities, and, from them, calculate the required 
measures of efficiency directly. Note that (24.10) through (24.12), which presume exponential service times 
for all customers, do not apply to the present process. 

Ao 10 
P1 = -Po=-Po'= (0.3333)po 

/.tl 30 

AI 10 
Pz = /.tz P1 = 32.718(0.3333)po = (0.1019)Po 

Az 10 
PJ =- Pz = --- (O.l019)po = (0.02955)po 

/.t3 34.482 

P4 = ~: PJ = 3/:~89 (0.02955)po = (0.007903)po 

and Pn = 0 for n = 5, 6, . . . . Normalizing, 
~ 

1 = 2, Pn = (1.473)po or po= 0.6789 
n=O 

Consequently, P1 = 0.2263, pz = 0.0692, PJ = 0.0201, and P4 = 0.0054. 
4 

(a) L = 2, npn = 1(0.2263) + 2(0.0692) + 3(0.0201) + 4(0.0054) = 0.4466 car 
n=l 

(b) The expected reneging rate, in cars per hour, as a function of the state of the system is r(n ). Therefore, 
the expected number of cars, N, that renege each hour is 

4 

N = 2, r(n)pn = (0)(0.6789) + (0)(0.2263) + (2.718)(0.0692) + (4.482)(0.0201) + (7.389)(0.0054) 
n=O 

= 0.3181 cars per hour 
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Supplementary Problems 

24.11 A bakery is staffed by two clerks, each of them capable of handling an average of 30 customers an hour, with 
the actual service times exponentially distributed. Customers arrive at the bakery according to a Poisson 
process, at a mean rate of 40 per hour. Determine (a) the fraction of time a given clerk is idle, and (b) the 
probability that there are more than two customers awaiting service at any given time. 

24.12 A suburban train station has five public telephones. During afternoon rush hours, individuals wanting 
to place calls arrive at the telephone booths according to a Poisson process, at the rate of 100 per 
hour. The average duration of a call is 2 min, the actual duration being exponentially distributed. 
Determine (a) the expected amount of time an individual must wait for a telephone once having 
arrived at the booths, (b) the probability that this wait will exceed 1 min, and (c) the number of people 
expected to be using or waiting for a telephone. 

24.13 A small bank has two tellers, one for deposits and one for withdrawals. The service time for each teller 
is exponentially distributed, with a mean of 1 min. Customers arrive at the bank according to a Poisson 
process, with mean rate 40 per hour; it is assumed (see Problem 21.26) that depositors and withdrawers 
constitute separate Poisson processes, each with mean rate 20 per hour, and that no customer is both a 
depositor and a withdrawer. The bank is thinking of changing the current arrangement to allow each 
teller to handle both deposits and withdrawals. The bank would expect that each teller's mean service 
time would increase to 1.2 min, but it hopes that the new arrangement would prevent long lines in front 
of one teller while the other teller is idle, a situation that occurs from time to time under the current 
setup. Analyze the two arrangements with respect to the average idle time of a teller and the expected 
number of customers in the bank at any given time. 

24.14 A tree surgeon hires an answering service to handle incoming telephone calls. The answering service is 
attended by one operator and has the ability to keep two callers on hold if the operator is busy with 
another caller. If all three lines are busy (one for the operator and two for keeping customers on hold}, 
a caller receives a busy signal. Calls are made to the tree surgeon according to a Poisson process, at the 
mean rate 20 per hour. Once a connection is made with the operator, the duration of a call is exponen­
tially distributed, with mean length 1 min. Determine (a) the probability that a caller will receive 
a busy signal, (b) the probability that a caller will be placed on hold, and (c) the probability that a caller 
will speak with the operator immediately upon placing a call. 

24.15 A takeout Chinese restaurant has space to accommodate at most five customers. During the winter 
months, it is noticed that when customers arrive and the restaurant is full, virtually no one waits outside 
in the subfreezing weather but goes to another establishment. Customers arrive at the restaurant 
according to a Poisson process, at a mean rate of 15 per hour. The restaurant serves customers at the 
average rate of 15 per hour, with the actual service times exponentially distributed. The restaurant is 
staffed only by the owner, who attends to customers on a first-come, first-served basis. Determine (a) 
the average number of customers in the restaurant at any given time, (b) the expected time a customer 
must wait for service, and (c) the expected rate at which revenue is lost by the restaurant due to limited 
facilities if the average bill is $10.00. 

24.16 A bus company directs its buses to its service facility for routine maintenance every 25 000 m. The 
service facility is open 24 h each day and is staffed by a single crew capable of working on one bus at a 
time. The time it takes to service a bus is exponentially distributed, with a mean of 4 h. Buses arrive 
at the facility according to a Poisson process, at a mean rate of 12 per day. Drivers, however, are 
instructed not to enter the facility if there are four or more buses already there, but to return to the 
dispatcher for reassignment. Determine (a) the expected amount of time a bus spends at the service 
facility, when it remains there; (b) the expected monetary loss each day to the bus company from its 
limited service facilities, if the cost of sending a bus to the facility and having it return unserviced is $80. 
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24.17 The bus company described in Problem 24.16 is thinking of expanding the service staff to two equally 
efficient crews. The daily cost of the added crew would be $300. Is such an expansion advisable? 

24.18 A hospital maternity section has five labor rooms. Maternity patients arrive at the hospital according to 
a Poisson process, at a mean rate of 12 per day, and are assigned a labor room if one is available; 
otherwise they are directed to another hospital. A patient occupies a labor room for 6 h, on the average; 
the actual time appears to be exponentially distributed about this mean. Determine (a) the average 
occupancy rate of the labor rooms (i.e., the percentage of labor rooms in use over the long run}, and (b) 
the average rate at which maternity patients are directed to other hospitals. 

24.19 A store has two clerks, each capable of serving customers at an average rate of 60 per hour; actual 
service times are exponentially distributed. The capacity of the store is five customers, with no waiting 
outside allowed. Customers come to the store in a Poisson-type process where the average arrival rate 
depends on the number of people in the store, as follows: 

Number in Store 0 1 2 3 4 5 

Average Arrival Rate, h-1 100 110 120 140 170 200 

Determine (a) the expected number of customers in the store together, (b) the expected amount of time 
a customer must wait for service, and (c) the expected rate at which customers are lost due to limited 
facilities. 

24.20 A car wash has room for only three waiting cars and has two lanes for washing cars. Each lane can 
accommodate one car at a time. Cars arrive according to a Poisson process, at a mean rate of 20 per 
hour, but are denied entrance whenever the wash is full. Washing and cleaning is done manually, and 
appears to follow an exponential distribution. Under normal conditions, each lane services a car in an 
average of 5 min. However, when two or more cars are waiting for service, the washing procedure is 
streamlined, reducing the average service time to 4 min. Determine (a) the expected number of cars at 
the car wash, and (b) the expected length of time a car spends at the wash if it is not denied entrance. 

24.21 Customers arrive at a small delicatessen according to a Poisson process, at a mean rate of 30 per 
hour. The establishment can hold at most four customers; whenever it is full, arriving customers are 
denied entrance and their business is lost. The owner of the delicatessen is the only server, and his 
service time is exponentially distributed so long as there is but one customer in the store, the average 
service time then being 5 min. The owner, however, becomes more efficient as the store fills, decreasing 
his conversations with customers and thereby decreasing the mean service time by 1 min for each 
customer in line waiting for service. Determine (a} the expected number of people together in the 
delicatessen (not including the owner}, and (b) the average service time for the owner. 

24.22 Determine the steady-state probabilities for an M/M/1 system with balking, if there is a 20 percent 
chance of a balk whenever there are one or more customers already in the system. 

24.23 Solve Problem 24.21 if the probability of a customer's balking is 1 - (~)" when the state of the system 
is n = 0, 1, 2, 3. 

24.24 Solve Problem 24.15 if customers renege according to the reneging function 

(n=O,l) 
(n = 2, 3, 4, 5) 

24.25 Interpret (24.1}, !J-nPn = An-tPn-t, in terms of transition rates. 
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24.26 Show that L == Lq + sp for an M/M/s system. 

24.27 Derive (24.13) and (24.14). 

24.28 Show that the steady-state probabilities for an M/M/s/K system reduce to those of an M/M/1/K system 
when s == 1. 

24.29 For an M/M/s/K system, deduce that 
·-1 

L = Lq + s - L (s - n )Pn 
n~o 

24.30 For the queueing process described in Problem 24.8, first determine the steady-state probabilities directly 
from (24.1) and then use them to calculate L. Compare your answer with the result of Problem 24.8(a). 

24.31 An M/M/oo system is a queueing process having a Poisson arrival pattern, with mean rate A ; a sufficient 
number of servers to accommodate all customers that enter the system, the servers having indepen­
dent, identically distributed, exponential service times with parameter l.t; and infinite capacity. Such a 
model often applies to self-service establishments. Show that for an M/M/oo system the steady-state 
probabilities constitute a Poisson distribution, with parameter p = Al~.t· Then determine L, W, Wq, 
and Lq. 

24.32 Students are accepted into a correspondence course in electrical wiring as soon as they register, and then 
they complete the course at their own pace. The completion times seem to follow an exponential 
distribution, with a mean of 7 weeks. New enrollments to the course follow a Poisson process, with a 
mean rate of 50 per week. Determine (a) the number of students that are expected to be concurrently 
enrolled in the course, and (b) the probability that it will take a student more than 7 weeks to complete 
the course. (Hint: Use the results of Problem 24.31.) 

24.33 A finite-source queueing system is one that has a limited number of potential customers. This number 
must be small enough so that it is unreasonable to approximate the population of potential customers by 
means of an infinite source, as has been done in all previous queueing processes in this book. Consider 
a source initially consisting of No potential customers. Their actualization times, i.e., the times at which 
they arrive at the service facility, are No independent, exponentially distributed random variables, each 
with parameter A. At the moment of service completion, a customer is returned to the source as a new 
potential customer. Therefore, whenever the state of the service facility is n, the state of the source is 
No- n, giving 

(n == 0, 1, ... , No) (1) 

Moreover, for s <No servers with independent, exponentially distributed service times having parameter 
/.t, 

(n = 1, 2, ... , s) 
(n = s + 1, s + 2, ... , No) 

(2) 

Find the steady-state probabilities in terms of p = A!s~.t, and compare with the infinite-source expres­
sions, (24.5) and (24.6). 

24.34 Infer directly from (1) of Problem 24.33 that A =(No- L)A. 

24.35 A company which has seven delicate machines that frequently break down employs two service people 
with the sole task of repairing them. Each service person can repair a machine in 2 h, on the average, 
the actual service time being exponentially distributed about this mean. A newly repaired machine runs 
an average of 12 h before breaking down again; the actual running time is exponentially distributed 
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about this mean. Determine (a) the expected number of machines that are operative at any given time, 
and (b) the percentage of time any given machine will be inoperative. (Hint: Use the results of 
Problems 24.33 and 24.34.) 

24.36 For a general queueing process, denote by S the average number of customers in service (which is the 
same thing as the average number of busy servers) over all periods in which the system is not 
empty. Infer from Little's formulas that the mean service time for all customers who are served, 1/P,, 
can be expressed as 



Answers to Supplementary Problems 

CIIAPI'ER 1 

1.16 

1.17 

1.18 

1.19 

1.20 

maximize: z = 28xt + 31x2 

subject to: 3.5Xt +4x2s50 

with: both variables nonnegative 

Note: Integer constraints on the variables are not required, since partially completed games can be 
finished in following weeks. 

minimize: z = 2xt + 3x2 + 5XJ + 6x4 + 8xs + 8x6 

subject to: 20xt + 30x2 + 40xJ + 40x4 + 45xs + 30x6 2: 70 

50xt + 30x2 + 20xJ + 25x4 + 50xs + 20x6 2: 100 

4xt + 9x2 + llXJ + 10x4 + 9xs + 10x6 2: 20 

with: all variables nonnegative 

Note: Since feed F is no better than feed C, which is cheaper, no feed F will be used in the optimal 
mix. Thus, the program can be simplified by substituting X6 = 0. 

maximize: z = 6xt +4x2+ 6x3+ 8x4 

subject to: 3xt + 2x2 + 2xJ + 4x4 s 480 

Xt+ x2+ 2xJ+ 3x4s400 

2xt+ x2+2x3+ X4S400 

Xt 2: 50 

X2+ XJ 2:100 

X4S 25 

with: all variables nonnegative 

minimize: z = 1.50xt + 0.75x2 + 2.00XJ + 1.75x4 + 0.25xs 

subject to: 0.2xt- 0.15x2 + 0.8x3- 0.2x4- 0.2xs 2: 0 

0.3Xt - 0.1xJ+ 0.9x4- 0.1xs2:: 0 

- 0.05xt + 0.15x2- 0.05x3- 0.05x4- 0.05xs 2: 0 

Xt+ X2+ XJ+ X4+ Xs2:: 500 

Xt s200 

X2 s400 

XJ s100 

X4 s 50 

xss800 

with: all variables nonnegative 

maximize: z = 20xt + 11x2 + 15XJ + 15x4 + 10xs + 8x6 + 5x, 

subject to: 145xt + 92x2 + 70x3 + 70x4 + 84xs + 14x6 + 47x, s 250 

Xt S 1 (i = 1, 2, ... , 7) 

with: all variables nonnegative and integral 

297 
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1.21 The cost of delivering a module from a factory to a manufacturer is the production cost plus the shipping 
cost. 

minimize: z = (1.10 + O.ll)xn + (1.10 + O.B)x12 + · · · + (1.03 + 0.15)x34 

subject to: xu+ X12 + X13 + Xt4 s 7 500 

X21 + X22 + X23 + X24 :S 10 000 

XJt + X32 + X33 + X34 :S 8 100 

Xu+ X21 + XJt 4200 

Xt2 + X22 + X32 8300 

X13 + X23 + X33 ·- 6300 

Xt4 + X24 + X34 2700 

with: all variables nonnegative and integral 

1.22 Since the filler is inexpensive, no more meat will be be used in each product than is required. Let x~, X2, 
and x3, respectively, designate the poundages of hamburger, picnic patties, and meat loaf to be made. 

1.23 

1.24 

1.25 

minimize: (200- 0.2Xt- 0.1 XJ) + (800- 0.5Xt- 0.5x2- 0.4xJ) + (150- 0.2x2- 0.3xJ) 

subject to: 0.2Xt + 0.1X3 :5 200 

0.5Xt + 0.5X2 + 0.4X3 :5 800 

0.2x2 + 0.3xJ s150 

with: all variables nonnegative 

The objective is equivalent to 

maximize: z = 0.7 Xt + 0.7 X2 + 0.8x3 

minimize: z = 145xn + 122x12 + 130x13 + · · · + 80x54 + 111xss 
s 

subject to: 2, x,i = 1 (j '= 1, 2, 3, 4, 5) 
i=l 

s 
L Xii = 1 (i = 1, 2,3,4, 5) 
j=t 

with: all variables nonnegative and integral 

minimize: z = 210 OOOx1 + 190 OOOx2 + 182 000x3 

subject to: 40xt + 6Sx2 2: 1500 

35xt + 53x3 2: 1100 

Xt :5 30 

X2 :5 30 

X3 :5 30 

with: all variables nonnegative and integral 

maximize: z = 250xt + (600- x2)x2 

subject to: 0.25xt +OAOx2s 500 

0.75x, + 0.60x2 s 1200 

with: both variables nonnegative 

1.26 The gravitational potential energy of the system is (for a suitably chosen reference level) proportional to 
a+ b + c, and this energy is a minimum at equilibrium. 
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CHAPTER 2 

2.7 Set X2 = X4- Xs and XJ = X6- x,, with each new variable nonnegative. Multiply the first constraint by 
-1. 

2.8 

2.9 

2.10 

2.11 

A= [-5 -2 2 3 -3 1 0] 
2 -2 2 1 -1 0 1 

C= [2, -1, 1, 4, -4, 0, Of 

B=[~] 

c""' [10, 11, 0, 0, ov 
As 3 4 0 1 0 [

1 2 1 0 OJ B= 200 
[

150] xo-[ ::] 6 1 0 0 1 

[ 

1 2 -1 0 0 1 0 0~] 
A= 3 4 0 -1 0 0 1 

6 1 0 0 -1 0 0 

A= [1 2 1 1 -1 0 1 0] 
2 1 3 7 0 -1 0 1 

A"" [1 6 1 1 0] 
2 3 1 0 1 

175 

C""' [10, 11, 0, 0, 0, -M, -M, -Mf 

[

150] B= 200 
175 

c""' [3, 2, 4, 6, 0, 0, M, MV 

C=[6,3,4,M,MY 

2.12 Set x 4 = xs - x 6, with each new variable nonnegative. Then XJ and Xs can be used as part of the initial 
solution once the second constraint is divided by 2. 

C= [7,2, 3, 1, -1, -MV 

[ 
2 7 0 0 0 1] [ 7] [X'] A""' 2.5 4 0 1 -1 0 B = 5 Xo = Xs 

1 0 1 0 0 0 11 X3 

2.13 c""' [10, 2, -1, 0, 0, 0, 0, M, M, MV 

A-[~ 1 r ~ -~ Ln n] B=[~J Xo=[~J 
1 1 1 0 0 0 0 0 0 1 60 x 10 

CHAPTER 3 

3.16 No; [1, 2f is not on the line segment between the other two points. 
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3.18 (b) and (c) are basic feasible solutions; (b) is degenerate. 

3.19 

3.20 (a), (c), and (d) are basic feasible, degenerate solutions. 

3.21 Let f(X) = CTX assume its minimum, m, at Pt and P2. Then, for f3t 2: 0, {32 2: 0, f3t + {32 = 1, 

3.22 If the subset were linearly dependent, then the nonzero constants which satisfied (3.1) for this subset 
would also satisfy (3.1) for the entire set, with all extra constants taken as zero. This would imply that 
the set is linearly dependent, which it is not. 

3.23 In (3.1), take the constant in front of the zero vector to be nonzero and all other constants as zero. 

CHAPTER 4 

4.9 * 5 
Xt =3, 

7 
z* =-

3 
4.11 

16 .d=-s· * 42 z =-
5 

4.10 * 9 
Xt =4, 

4.12 .d = 1285.7, x~ = 1857.1; z* = -3142.8 

4.13 No feasible solution exists. 

4.14 xt = 0, x~ = 700, x~ = 500, x~ = 1000, x~ = 0, x~ = 0; z* = 27600. (Not only is this solution degen­
erate, but the solution includes a zero artificial variable among the basic variables. This may occur when 
one or more of the constraints is redundant. Here, the last constraint is the sum of the first two constraints 
minus the sum of the next two.) 

4.15 xt = 23.8095, x~ = 32.1429; z* = 591.667. 

4.16 xt = 0, x~ = 423.077, x; = 0, x~ = 153.846; z* = 1769.23. 

4.17 No maximum exists. 

4.18 xt = 6.66667, x~ = 0.555556, x; = 0; z* = 41.6667. 

4.19 xt = 30, x~ = 0, x; = 30; z* = 270. 

4.20 x!=69090.9bbl, x~=17272.7bbl, x~=2272.73bbl, x~=2727.27bbl; z*=$235454. 

4.21 xt = 0.90909 OZ, X~= 1.81818 OZ, x; =X~= X~= X~= 0; z* = 7.27273¢. 

4.22 xt =50, x~ = 0, x; = 145, x~ = 10; z* = $1250. 

4.23 xt = 93.75 gal, x~ = 125 gal, x; = 56.25 gal, x: = 0, x; = 225 gal; z* = $403.125. 

4.24 xt = 937.5 lb, x~ = 562.5 lb, x; = 125 lb; z* = 0 lb. 
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CHAPTER 5 

5.13 maximize: z = 4wt + 10w2 + 6w3 

subject to: 2wt + 4w2 + WJ :512 

6wt + 2w2+ WJ:526 

5Wt + W2+2w3 :5 80 

with: all variables nonegative 

5.14 Multiply the last constraint in the primal by -1. 

5.15 

maximize: z = 6wt + 5w2- 7wJ 

subject to: 2wt - WJ =s 3 

5wt + 4w2+ 6w3 ::s2 

- 2w2- 3w3 :5 1 

Wt + 2w2-7WJ:52 

Wt +3w2- 5w3:53 

with: all variables nonnegative 

minimize: z = 25wt + 30w2 + 35w3 

subject to: 7wt + 2w2 + 6w3 2:: 6 

-11 Wt- 8w2- W3 :5 1 

3wt + 6w2 + 7w3 2:: 3 

with: all variables nonnegative 
(The right-hand side of the second constraint has been rendered positive.) 

5.16 Introduce surplus variable Xs in the first constraint. 

5.17 

minimize: z = 16wt + 20w2 

subject to: 8wt + 3w2 2:: 10 

6wt 2::15 

-wt + 2w2 2::20 

Wt- w22:25 

-wt 2:: 0 

(Observe that this program has no feasible solution.) 

maximize: z = Wt + 4w2 

subject to: 3w2:51 

Wt + W2:52 

Wt +3w2:51 

5.18 z • = 72 in both cases. 

5.19 X~= 1.25, xf =X~= xt =X~= 0; z* = 2.5. 

5.20 Multiply each constraint by -1. Then the symmetric dual is: 

minimize: z = -6w1- 12w2- 4w3 

subject to: -6wt- 4w2- WJ 2::5 

-w~- 3w2- 2wJ 2::2 

with: all variables nonnegative 
This program has no feasible solution. 

301 
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5.21 maximize: z = 5wt-5W2 

subject to: Wt + W2S-1 

-Wt-W2S-1 

5.22 The second slack variable in the optimal solution to the primal, x;, is positive; hence w~ must be zero 
(as it is, in the last row of Tableau 2). 

5.23 xt = 1/3, x~ = 0, x~ = 2/3; wt = 0, w~ = 1/3. 

5.24 From the result of Problem 5.9, 

BTWo = CTXo 2:: BTW and 

Therefore, Wo is optimal and Xo is optimal. 

CHAPTER 6 

6.9 xT=l, x~=·3, x~=O; z*=7. 

6.10 xT=x~=x~=O, x~=2; z*=6. 

6.11 xT=O, x~==7, x~=l; z*=71. 

6.12 Infeasible. 

6.13 Develop sites B, C, D, and F, for a net capacity of 55 ton/wk. 

CHAPTER 7 

7.8 xf=l, x~==4, x~=O; z*=37. 

7.9 xt = 3, x~ = 0; z* = $360. 

7.10 xT = 1, x~ == 3, x~ = 0; z* = 7. 

7.11 xT=x~=xt=O, x~=2; z*=6. 

7.12 xt=O, x~==7, x~=l; z*=71. 

7.13 xt=l, x~==3, x~=O; z*=7. 

CHAPTER 8 

8.9 Transportation cost equals production cost plus shipping cost. 
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I II III IV (dummy)V Supply U; 

1.21 1 1.23 I 1.19 I 1.29 1 0 I -A 7500 0 
3200 200 (0) (0.06) 4100 

1.07 J 1.11 I 1.05 1 1.09 I 0 I 
B 10000 -0.14 

1000 (0.02) 6300 2700 (0.14) 

1.17 J 1.16J 1.15 I 1.18 I 0 I c 8100 -0.07 
(0.03) 8100 (0.03) (0.02) (0.07) 

Demand 4200 8300 6300 2700 4100 

Vj 1.21 1.23 1.19 1.23 0 

Plant A produces 3200 units for customer I, 200 for customer II, and remains with an unused capacity of 400; 
plant B produces 1000 units for customer I, 6300 for customer III, and 2700 for customer IV; plant C 
produces 8100 units for customer II. 

1 2 3 4 5 Supply U; 

145 I 122 I 130 I ~ 115 J 
1 1 95 

(18) (17) (11) 0 1 

80 I 63 I 85 I ~ 78 I 2 1 48 
0 (5) (13) 1 (10) 

121 
J 107 1 93 I ~ 95 I 

3 1 69 
(20) (28) 1 0 (6) 

118 1 83 I 116 I ~ 105 1 
4 1 73 

(13) 1 (19) (7) (12) 

97 I 75 I 120 1 ~ 111 J 
5 1 65 

I 0 (31) (15) (26) 

Demand 1 1 1 1 1 

Vj 32 10 24 0 20 

Lawyer 1 to case 5, lawyer 2 to case 4, lawyer 3 to case 3, lawyer 4 to case 2, and lawyer 5 to case 1. 
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1 2 3 (dummy) 4 Supply u, 

1 ~ ~ -~1 ~ 320000 88 
(7) (1) 320000 (3) 

2 ~J ~ -~ ~ 270000 91 
(3) 120000 (2) 150000 

3 ~ ~ -~ ~ 190000 90 
100000 60000 30000 (1) 

Demand 100000 180000 J 350000 150000 

Vj -3 o I 2 -91 

Vendor 1 to deliver 320 000 gal to airport 3; vendor 2 to deliver 120 000 gal to airport 2 and will remain with 
150 000 gal; vendor 3 to deliver 100 000 gal, 60 000 gal, and 30 000 gal, respectively, to airports 1, 2, and 3. 

8.12 Maximizing profit is equivalent to minimizing negative profit. 

1 2 3 4 Supply U; 

A ~ ~ ~ ~ 2500 0 
1800 700 (1) (2) 

-2 I ~ ~ ~ B 2100 0 
(8) (0) 550 1550 

0 J ~1 ~~ ~ (dummy)C 1800 6 
(4) 1600 (1) 200 

Demand 1800 2300 550 1750 

Vj -10 -6 -7 -6 

Plant A to supply chains 1 and 2 with 1800 and 700 loaves, respectively; plant B to supply chains 3 and 4 with 
550 and 1550 loaves, respectively. 
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8.13 
City 1 City 1 City 2 City 2 City 3 City 3 Supply U; 

Elders Others Elders Others Elders Others 

1 ~ ~ ~ ~ ~ ~ 1.100 0 
(0) 0.175 0.~ 0.470 0.195 (3) 

2 2J 2J ~ ~ 2J _2j 
0.900 -2 

0.325 0.575 (3) (3) (3) (6) 

(dummy) 3 ~ ~ ~ ~ ~ ~ 0.980 -3 
(100) (0) (100) 0.330 (97) 0.650 

Demand 0.325 0.750 0.260 0.800 0.195 0.650 

Vj 3 3 3 3 6 3 

8.14 If c is subtracted from each element of the rth row and d from each element of the tth column, then the new 
objective, z', is related to the old objective, z, by z' = z- ca,.- db,. Thus, z'- z is a constant, and 
whatever allocation minimizes the one objective also minimizes the other. 

CIIAPI'ER 9 

9.10 
1 2 3 (dummy)4 Supply U; 

Month 1, ~ ~ ~ ~ 
aegular 1 -5 

1 (0) (6) (5) 

Month 1, w ~ ~ 8 
Overtime 2 -1 

1 1 (6) (1) 

Month 2, 1000 1 w ~ ~ 
Regular 2 0 

(960) 1 (6) 1 

Month 2, 1000 1 w ~ iJ 
Overtime 2 0 

(960) (4) (10) 2 

Month 3, 1000 T 1000 1 ~ 8 
Regular 3 0 

(960) (957) 2 1 

Month3, 1000 T 1000 1 ~ ~ 
Overtime 2 0 

(960) (957) (5) 2 

Demand 2 2 2 6 

Vj 40 43 40 0 
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9.11 
Oct. Nov. Dec. Jan. Feb. dummy Supply U; 

~ ~ 93 ~ ~ QJ Aug. ~ 12.5 0 
(0) (0) 4.5 2.2 3.1 2.7 

Sept. ~ ~ ~ ~ ~ w 11.0 -5 
7.1 3.9 (0) (0) (0) (5) 

Oct. 
1000 1 ~ ~ ~ ~ 0 9.5 -8 

(935) 9.3 0.2 (0) (0) (8) 

Nov. 
1000 1 1000 1 L=:J ~I L2=_1 ~ 8.1 -41 

(968) (958) 8.1 (0) (0) (41) 

Dec. 
1000 1 1000 1 1000 r ~ ~ ~ 5.5 -55 

(982) (972) (962) 5.5 (0) (55) 

Demand 7.1 13.2 12.8 7.7 3.1 2.7 

Vj 73 83 93 103 113 0 

9.12 
2 3 4 6 (dummy) 7 Supply U; 

1 lJ l2J l2J ~ 0 20 2 
20 (11) (1) (91) (8) 

2 ~I ~ ~~J 8 ~ 70 -3 
35 (113) (103) 35 (13) 

3 ~ ~ ~] ~ IiJ 90 10 
(1) 70 10 (83) 10 

4 L:J ~ ~J ~ ~ 70 0 
40 (110) 30 (1) (10) 

5 
100 l ~ ~r L!:J 0 30 6 

(91) (104) 30 (2) (4) 

Demand 95 70 70 35 10 

Vj 3 -10 0 7 -10 
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3 4 5 6 7 (dummy)8 Supply U; 

1 ~ ~ 10000 1 10000 1 10000 1 GJ 150 578 
135 15 (7094) (7101 (7106) (10) 

2 ~ ~ 10000 1 10000 r 10000 1 w 170 588 
(27) 65 (7084) (7091) (7096) lOS 

3 ~ 10000 1 2328 1 2321 1 23351 [i] 
320 0 

185 (9986) 75 60 (19) (588) 

10000 1 0 I 2320 1 2313 1 2302 1 w 4 320 -14 
(10 014) 240 (6) (6) 80 ( 602) 

Demand 320 320 75 60 80 105 

Vj 0 14 2328 2321 2316 -588 

75 units from location 1 through location 3 to location 5; 60 units from location 1 through location 3 to 
location 6; 15 units from location 1 through location 4 to location 7; 65 units from location 2 through location 
4 to location 7. 

1 2 3 4 5 Supply U; 

1 iJ .2J [i:J ~ ~ 49 0 
34 (7) 7 8 (25) 

2 
l2J ~ L::J ~ ~ 46 0 

(7) 34 (10) 12 (35) 

3 ~ L::J ~ ~ ~ 34 -12 
(24) (34) 34 (4) (0) 

4 L::J ~ ~ ~ 0 34 -25 
(50) (50) (30) 32 l 

5 w w ~ w CD 34 -40 
(105) (115) (56) (30) 34 

(dummy)6 w ~ ~ ~ ~ 7 -40 
(40) (40) (28) (15) 7 

Demand 34 34 41 52 43 

Vj 0 0 12 25 40 

City 3 receives its seven cars from city 1. City 4 receives a total of 20 cars from cities 1 and 2, keeps 18 
of them, and transships two to city 5. City 5 lacks seven cars in the final disposition. 
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9.15 Store 1 to company 4, store 2 to company 3, store 3 to company 2, and store 4 to company 1; 
z* = $325400. 

9.16 Lawyer 1 to case 5, lawyer 2 to case 4, lawyer 3 to case 3, lawyer 4 to case 2, and lawyer 5 to case 1; 
z* = 436h. 

9.17 1-+2-+4-+5-+3-+1, with z* = 270. 

9.18 1-+4-+3-+5-+2-+1, with z* = 14. 

9.21 For the cost matrix 

[T 
I 1 1 

.LJ 1000 1000 1000 
1000 1000 1 
1000 1 1000 1000 

1 1000 1000 1000 

the closed, self-intersecting route 1-+ 3-+ 4-+ 1-+ 2-+ 5-+ 1 is cheaper than any circuit of length 5. 

CHAPTER 10 

10.14 (a) Local and global maximum at x = 1, boundary (local) and global minimum at x = 0, boundary (local) 
and global minimum at x = 3. (b) Boundary (local) and global maximum at x = 1, local and global 
minimum at x = 3, boundary (local) and global maximum at x = 4. (c) Boundary (local) and global 
minimum at x =-I, local maximum at x = 1, local minimum at x = 3, boundary (local) and global 
maximum at x = 5. 

10.15 (a) Boundary (local) maximum at x = 0, local and global minimum at x = I, boundary (local) and global 
maximum at x = 3. (b) Boundary (local) and global maximum at x = 0, local and global minimum 
at x = I, boundary (local) and global maximum at x = 2. (c) Boundary (local) maximum at x = 0, 
local and global minimum at x = 1. There is no global maximum. 

10.16 (a) Local and global minimum at x = 1. (b) Local and global maximum at x = -1. (c) Boundary (local) 
and local minimum at x = 5, boundary (local) and local maximum at x = 10. 

10.17 f"(x) = 6(x - 2), which is negative for x < 2 and positive for x > 2. 

10.18 (Strictly) convex on (0, oo) and (strictly) concave on (-oo, 0). 

10.19 x* = 1.9375, with z* = 4.002. 

10.20 X* = 3?T/4 = 2.356, with Z * = 3.926; E = ?T/8 = 0.393. 
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10.21 x* = 1.905, with z* = 4.005. 

10.22 x* = 2.175, with z* = 3.893 and E' = 0.242. 

10.23 x* = 1.931, with z* = 4.002. 

10.24 x* = 2.225, with z* = 3.928; E = 0.283. 

CIIAPI'ER 11 

11.15 xt = 2.5, x! = 3, x~ = 0.4; z* = 0. 

11.16 z* = 1 occurs at many points, one being xt = x! = 0. 

11.17 There is a local minimum at Xt = 12, X2 = 24, with z = -0.001157, bu.t there is no global minimum (the 
function approaches -oo as x1 and x2 approach zero through negative values). 

11.18 z * = -0.6495 occurs at many points, one being x t = 'TT/3, x! = 'TT/3. 

11.19 xt = 0, x! = ±1; z* = 0.7358. 

11.20 xt=x~=l.496, x~=1; z*=-1. 

11.21 xt = 2, x~ = 3; z* = -10.076. 

11.22 xt=x~=1; z*=O. 

11.23 A= 1.47 X 10-30
, m = 0.04. In 1980, N = 36 597. 

11.24 H, = 2A. 

CIIAYI'ER 12 

12.16 

12.17 

12.18 

subjectto: 2xf+x~-10=0 

maximize: z = -(x. -1)2
- x~ 

subject to: xi+ x~- 4 = 0 

maximize: z = 6x. -2xf+ 2x1x2- 2x~ 

subject to: x. + X2- 2 ~ 0 

with: all variables nonnegative 
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12.19 

subject to: -1lxt - 9x2 -- l1x3 + 1000 ~ 0 

X2+ X3- 40~0 

X2·- X3+ 40~0 

with: all variables nonnegative 

12.20 

subject to: x~+ x~-4~0 

-.d- x~+4~0 

XtXJ-3~0 

-XtX3+3~0 

with: all variables nonnegative 

12.21 xt = 2, x~ = 0; z * = L 

12.22 xi= x~ = 0, x~ = -1; z* = -1. 

12.23 xt = 0, x~ = 4, x! = 17/3; z* = 68/3. 

12.24 X t = X! = 0; z * = L 

12.25 xt = ±3/V2, x~ = x! = ±Y2; z* = 17. To satisfy the nonnegativity conditions, take the plus sign in 
each case. 

12.26 xt = ±VS, x~ = 0; z* = 25. 

12.27 z* = 7.980 at a number of points, one of which is xt = x~ = 1.911, x~ = 0.822. 

12.28 z* = 11 at six points, one of which is xt = 3, x~ = x! = L 

12.29 xt = 3.512, x~ = 0.217, x! = 3.552; z* = 38.28. 

12.30 No global minimum exists: z--+ 1 as Xt--+ 0, keeping (xt, X2, XJ) feasible. 

12.31 xt = 1.5, x~ = 0.5; z* = 5.5. 

12.32 xt=58.18, x~=40, x!=O; z*=38476. 

12.33 xt=x~=5000, x!=O; z*=9Xl07
• 

12.34 X f = 0.823, X~ = 0.911; Z * = 1.393. 12.36 xi= 1.4, x~ = 0.8; z* = 1.8. 

12.35 xt = 1/3, x~ = 5{3; z* = 2.249. 12.37 xi= 1.07, x~ = 2.80; z* = 9.47. 



ANSWERS TO SUPPLEMENTARY PROBLEMS 

CHAPTER 13 

13.9 
maximize: z = [xt, X2, X3] [ -~ - ~: - ~~] [~:] + [0, 0, 0] [ ~:] 

12 -17 -46 X3 X3 

13.10 

subjectto: [- 1~ -i -1i][~:J ::;;[- 1~] 
0 -1 -1 X3 -40 

with: Xt, x2, and XJ nonnegative 

-11 -9 -12 I 1 0 0 0 0 0 0 0 0 I 
011:010 0 0 0 00 0 
0 -1 -1 I 0 0 1 I 0 0 0 I 0 0 0 

-----------:-------- '-----------:---------
48 -28 -24 I 0 0 0 : -1 0 0 I -11 0 0 

I I 
-28 28 34 I 0 0 0 : 0 -1 0 I -9 1 -1 
-24 34 92 ~ 0 0 0 I 0 0 -1 ! -12 1 -1 

A= 

Y = (Xt, X2, X3, St, S2, S3, Ut, U2, U3, Vt, V2, v3)T 

Y = ( Ut, U2, U3, Vt, V2, V3, Xt, X2, X3, St, S2, S3)T 

13.11 xt = 58.18, x~ = 40, x~ = 0; z* = 38 476. 

13.12 xt=1, x!=1; z*=3. 

13.13 xt = 2.5, x! = 2.882, x~ = 1.736; z* = 332.9. 

13.14 

[ 

486.8 302.1 -209.0] [X1] 
minimize: z = [x1o x2, XJ] 302.1 197.9 -114.6 X2 

-209.0 -114.6 228.5 X3 

subject to: X3 = 6000000 

1.75xt + l.6Sx2 + 1.45x3 :5 10 000 000 

with: all variables nonnegative 

13.15 Show first that the nonnegativity conditions (3) may be dropped. Then, 

-1000 
40 

B= -40 
0 
0 
0 

Q=( 1~0 2~0 ] D=[~] A=[1,1) 8=[15000)=15000 

AQ-lAT = [1 11[1/100 0 ][1] = 31200 
' 0 1/200 1 

and 1
3/200 -15 ooo I 

*- 15000 0 
z - 3/200 

13.16 I -4 -(5-4)1 

8+z*= (S- 4) 0 (-4)=3.75 
-4 or z* = -4.25 

311 
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CHAPTER 14 

14.11 z* = $700; xt = 3 days, x~ = 0, x~ = 2 days. 

14.12 z* = $675; xt = 2 days, x~ = 1 day, x~ = 2 days; or xt = 3 days, x~ = 1 day, x~ = 1 day. 

14.13 z* = $150; xt = x~ = U, x! = 2, x: = 1. 

14.14 z* = $398; xt = 12, x~ = 2. 

14.15 z*=51; xt=3, x~=O, x!=2. 

14.16 z*=130; xt=O, x~=1, x!=1, x:=o, x~=O. 

14.17 xt=3, x~= 1, xJ=2. 

14.18 Using the notation of Problem 14.8, we have, for j = 4, 3, 2, 1, 

mi(u) = max {I(x)- M(x)- R(u)+ R(x)+ mi+t(X + 1)} 
Osxsu 

with m 5 = 0 and R(O) = 0. Then z * = $33 600, either by purchasing a 1-year-old machine each year or 
by purchasing a 1-year-old machine each year for the first 3 years and keeping the last of these machines for 
the fourth year. 

14.19 The state variable for stage j has the values u = 1, 2, ... , j, which are the possible ages of the truck in 
use at the beginning of year j. Let 

Ik (u) =anticipated income from a u-year-old machine purchased in stage k 
Rk(u) =cost of replacing au-year-old machine purchased in stage k with a new model 
Mk(u) =cost of maintaining au-year-old machine purchased in stage k 

and set Ij(3) = - M (a large negative number). Then, for j = 5, 4, 3, 2, 1, with m6(u) = 0, 

mi(u) =max {Ii-u(u)- ~-u(u) + mi+t(U + 1), Ii(O)- ~(0)- Ri-u(u) + mi+t(1}} 

The solution is z* = $26 000, with xf =KEEP, X~= BUY, x! =KEEP, x: =BUY, X~= KEEP. 

14.20 Let each job correspond to a stage, and specify the state at stage j by the triplet (a., a2, aJ), where 
a; (i = 1, 2, 3) is 1 or 0 according as worker i is or is not available for assignment to job j. Then, 

z * = min {c. 1 +min {c22 + C33, C32 + C23}, C21 +min {c12 + CJJ, C32 +CD}, CJt +min {c12 + C23, C22 + c13}} 

The Hungarian method is far preferable for larger assignment problems. 

14.21 $4 985 980; by producing 2, 3, 3, 6 computers. (Note that discounting has changed the optimal policy.) 

14.22 $30 047.62; same optimal policies as in Problem 14.18. 

CHAPTER 15 

15.8 z * = 13, for the tree {AD, BD, CE, DE, DG, EH, GF}. 



ANSWERS TO SUPPLEMENTARY PROBLEMS 313 

15.9 z* =55, for a number of trees including {AD, AC, DG, BF, BE, FG, GH, HI, OJ, HK, KL}. 

15.10 z* = 25, for the path {AD, DG, GH, HK, KL} or the path {AB, BF, FG, GH, HK, KL}. 

15.11 z * = 14 units. 

15.12 z* = 21 units. 

15.13 z * = 123 units. 

15.14 z * = 17 units. 

15.15 z* = $2400 (50 units at $48 each), via Los Angeles to Phoenix to Chicago to New York. 

15.16 Initially, either KEEP, KEEP, KEEP or KEEP, BUY, BUY; thereafter, buy a new truck each year. 

15.17 (a) 22; (c) 19. 

15.18 19 units. 

15.19 The cut is {BG, EG, CG, FG, DG}. Its cut value, 1, represents an upper bound on the flow, and since a 
flow of 1 unit is feasible (by Problem 15.5), it is the maximal flow. 

CHAPI'ER 16 

16.11 (a) B, and B4 are dominated by B2. Unstable. 

X*_ [10 1] - u·u Y* = [o. ~~· 1\.o J 
(b) BJ is dominated by B,, and B4 is dominated by B2. Unstable. 

G* = _12 
11 

X*=[~·~] Y* = [~.~.0,0] G* = 0 
(c) B., B2, andB4aredominated by BJ. Stable, with G* = -1. Rowplayershould useA2 only; column 

player should use BJ only. 
(d) Unstable. 

X*= Y* = [2n, 4/7, 1/7] 

(e) AJ is dominated by A2, and B, is dominated by BJ. 

a·= -4n 

x• = [2/7, 5n, o] Y* = [0, 5/7, 2/7] G* = 32/7 

(f) A~, A3, and A4 are dominated by A2. Stable, with G* = 0. Row player should use A 2 only; 
column player should use B 1 only. 

16.12 X*= [l/4, 3/4], Y* = [3/4, 1/4, 0]; G* = 68.125. 

16.13 Both chains should locate in town C, with chain I capturing 65 percent of the total business. 
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16.14 Write "A 1" on one slip of paper, "A2" on three slips, and "A4" on eleven slips. Draw a slip (with 
replacement) before each play. 

16.15 Army A uses the forest route with probability 1/4 and the flatlands route with probability 3/4; army B 
attacks either route with probability 1/2. The value of the game (to army B) is G* = 5/2 strikes. 

16.16 Blue Army attacks the 20-million-dollar airfield at full force with probability 4/9 and attacks the other 
airfield at full force with probability 5/9. Red Army defends the expensive airfield at full force with 
probability 2/3 and splits its forces between airfields with probability 1/3. G* = 6~ million dollars. 

16.17 Both should offer 2 yards. 

16.18 1-95 with probability 0.53 and the back roads with probability 0.47. 

16.19 X= [5/12, 7/12, 0], Y* = [4/9, 5/9, 0). 

16.20 From g,i = -gi, (i,j = 1, 2, ... , r), it follows that E(X, Y) = -E(Y, X) for any two r-dimensional prob­
ability vectors. Then, 

M1 = max (min E(X, Y)) = max (min- E(Y, X)) 
X Y X Y 

=-min (max E(Y, X))= -min (max E(X, Y)) = -Mn 
X Y Y X 

But M1 = Mn, by the minimax theorem. Hence, 

M1 "'Mn = 0= G* 

16.21 No; G* = -$0.25. 

CHAPTER 17 

17.16 To take offer under minimax or middle-of-the-road, not to take offer under optimistic. 

17.17 To extend credit. 17.19 Not to take offer. 

17.18 To convert. 17.20 Not to extend credit. 

17.21 See Fig. A-1 (gains in thousands of dollars). To test stand-alone phase, then to convert to new process 
only if stand-alone phase is efficient. 

17.22 Not to order lie detector tests, and to fire the treasurer. 

17.23 To test market, then to go national only if test is highly or moderately successful. 
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Fig. A·l 



316 ANSWERS TO SUPPLEMENTARY PROBLEMS 

17.24 $82 250. 

17.25 The test has value zero; see Fig. A-2 (gains in thousands of dollars). 

17.26 Estimate u(-15) = 0, u(-14) = 0.07, u(-4) = 0.31, u(-3) = 0.32, u(19) = 0.42, u(20) = 0.425, u(49) = 
0.87, and u(50) = 1. Same answer as Problem 17.23. 

17.27 U2 = 85, U3 =55, U4 = -20. 

17.28 C(0.34) = -$2 000 000, R(0.34) = $8 460 000. 

17.29 Risk-averse on [-15, 10), risk-indifferent on (10, 31), risk-seeking on (31, 50]. 

17.30 Consider the risk-averse situation. Let M; (I = 1, 2, ... , n) designate the dollar gain associated with the 
ith state of nature, S;, for a specific decision D. Denote the utility of M; by u; and the probability of S; by 
p;. Since the utility function is strictly concave, its inverse, M = f(u), is strictly convex. Therefore, 

17.31 

C = f(ptU! + P2U2 + · · · + PnUn) S. pi/(u,) + p2/(u2) + · · · + Pnf(un) = E(D) 

the expected dollar gain of the decision. Hence, R = E(D)- C2:0. The risk-seeking case is proved 
similarly. 

s, s2 s3 

D, ·-130 -45 0 
D2 -90 -15 -45 
D3 -20 0 -110 
v. 0 -5 -125 

17.32 With a regret table, choose D2 under minimax, either D, or D2 under optimistic, and D2 under 
middle-of-the-road. 

CHAPTER 18 

18.6 m,(8) = $77.40, with a 3, 2, 3 policy. 

18.7 Let the state u be the number of thousand-dollar units at hand. Then m,(2)= $2600, under the 
optimal policy 

~ 0 1 2 3 4 5 6 

d,(u) ... . . . A,B . .. . . . . . . . .. 
d1(u) ... A,B A,B A,B A,B . . . . .. 
d3(u) 0 B A,B A,B A,B A,B A,B 

Here, 0 represents the decision to make no investment. 
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18.8 m,(2)= 0.352, for the policy 

0 1 2 3 4 5 6 

d,(u) ... . .. A . .. . .. . .. . .. 
d2(u) ... A A O,A,B A .. . . .. 
dJ(U) ... . .. . .. A A 0 0 

18.9 Minimize the probability of not finding oil. Then the maximum probability of finding oil is 

1- m,(8)= 1- 0.6= 0.4 

with all money allocated to site 1. 

18.10 The state u is the number of units of work yet to be accomplished. Then, m ,(10) = 5.0368, with one of 
many optimal policies being 

~ 0 1 2 3 4 5 6 7 8 9 10 

d,(u) . . . . . . ... . . . . . . . . . . .. . .. . . . . .. 2 
d2(u) 0 1 1 1 1 1 1 2 2 3 3 
d3(u) 0 1 1 1 1 2 2 3 3 4 4 
d4(u) 0 1 1 4 4 5 5 6 . . . . . . ... 

18.11 Take as the state u the age of the current machine. Then, m,(1) = $3118.83, under a policy that always 
retains the current (operable) machine. 

18.12 The state u is the number of computers in inventory. Then m,(O) = $127110, under the policy 

~ -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

d,(u) ... . . . . . . . . . . . . 3 . . . . .. . . . . . . . .. . .. 
d2(u) ... 4 4 4 3 3 0 0 0 . . . . . . . .. 
#u) 4 4 3 3 2 0 0 0 0 0 0 0 
d4(u) 4 4 3 2 1 0 0 0 0 0 0 0 
ds(u) . . . . . . ... . .. 1 0 0 0 0 0 0 0 

18.13 Maximum reliability of 0.351, from 3 physical units of component 1, 2 units of component 2, and 1 unit of 
component 3. 

18.14 Subcontractors 1, 2, and 3 assigned components 2, 1, and 3, respectively. 

18.15 Set 

u =antibody units still required to make up a total of 6 (from 0 to 6, in tenths) 
m1(u) ""minimum expected number of workdays lost beginning at stage (day) j in state u 

x ""number of pills taken in a day (from 0 to 5; why?) 
f(x) "" units of antibody absorbed from x pills 
p(x) =probability of missing work the next day (which is equivalent to the expected number of 

days missed from work) if x pills are taken 
Then, for j = 1, 2, 3, 4, 
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mi(u) = min [p(x) + mi+I(u- /(x))] 
x=O, ... ,5 

with mi(u)=O for u<O (j==2,3) and 

ms(u)= { 10~00 
u :s;O 
u>O 

18.16 Set 

u =number of work units needed to complete project 1 (from 0 to 16, in tenths) 
v =number of work units needed to complete project 2 (from 0 to 23, in tenths) 

mi(u, v) =minimum expected cost to complete both projects beginning at stage (day) j in state (u, v) 
/t(z) ==number of work units completed by z crews on project i (i == 1, 2) 

X;= number of contractor's own crews assigned to project i (i = 1, 2) 
y; ==number of subcontracted crews assigned to project i (i = 1, 2) 

Then, for j = 1, ... , 5, 

where 

Xz= 1,2,3,4,5 

and the minimum is taken over all nonnegative integral values of x~, xz, y~, yz such that 

X!+ Xz= 5 

The end condition is 

18.17 Set 

u :s; 0 and v :s; 0 
u>O or v>O 

u = number of money units remaining for allocation 
v =number of votes already won 

mi(u, v) =maximum probability of gaining at least 100 votes starting at stage (primary) j in state (u, v) 
\.-} = number of votes at stake in stage j 

Pi (x) =probability of winning \.-} if x money units are spent in stage j 

Then 

mi(u, v) = maximum {pi(x )m;+I(u - x, v + \.-}) + [1- Pi(x )]mi+I(u - x, v )} 
osx:s:min {u, 7} 

for j = 1, ... , 5, with 

v<100 
v 2:: 100 

The possible values for v are 0 for stage 1; 0 and 89 for stage 2; 0, 69, 89, and 158 for stage 3; and so on. 

CHAYfER 19 

19.15 Stochastic, not regular, ergodic; L = [~ ~]. 

19.16 Not stochastic. 
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19.17 Not stochastic. 

19.18 Stochastic, not regular, not ergodic. 

19.19 Stochastic, not regular, ergodic; 

19.20 Stochastic, regular, ergodic; 

19.21 Stochastic, not regular, ergodic; 

19.22 3/11. 

19.23 (a) 0.7625, (b) 0.8. 

0 
3/8 
0 

3/8 

~ 5~8] 
0 5/8 

L= _!_[~~ g ~9] 45 
19 17 

19.24 4/13, or approximately 31 percent of the time. 

19.25 0.2, 0.14, 0.154, 0.151, and 0.15162. 
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19.26 (a) Approximately 34 discharged, 31 ambulatory, 18 bedridden, and 17 dead. (b) Approximately 65 
discharged and 35 dead. 

19.27 7/12 in good condition, 5/12 in average condition. 

19.28 (a) 1, (b) none, (c) 1 and 3, (d) 1. 

19.29 Designate one of the absorbing states as state 1. Then P has a 1 in the (1, I)-position and zeros in the 
rest of the first row. Any power of P will have this same first row. 

19.32 Because A = 1 is an eigenvalue of Pr, it is also an eigenvalue of P (the two matrices have the same 
characteristic equation). 

19.33 First prove, by induction, that eigenvectors belonging to distinct eigenvalues of P are linearly in­
dependent. Then construct M out of N linearly independent eigenvectors. 

19.34 See Problem 19.15. 
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CHAPI'ER 20 

20.13 Any bird kept more than 5 weeks can bring no more than 7~ above a 5-week-old chicken. This is less 
than the 10~ differential profit obtained from replacing a 5-week-old bird by a newborn chick and selling 
it after 1 week. The optimal policy is to sell when birds are 3 weeks old. Here the weekly interest rate, 
obtained by solving (1 + i)52 = 1.09, is i = 0.0016586374; hence 

1 
a= l+i= 0.998344109 

20.14 
State 2 3 

Decision 0 3 

20.15 State 1: enter a year with a 1-year-old company machine 
State 2: enter a year with a 2-year-old company machine 
State 3: enter a year with a leased 1-year-old machine 
State 4: enter a year with a leased 2-year-old machine 

State 1 2 

Decision KEEP LEASE 

4 

4 

3 

KEEP 

5 

5 

4 

LEASE 

20.16 If I denotes the N x N identity matrix and Y = [PV(1), PV(2), ... , PV(N)]r, (20.2) may be written as 

(±•-P)v=±c 
The coefficient matrix on the left could be singular only if 1/a were equal to A, an eigenvalue of P. But 

_!_.=1+i>l 
a 

while (Theorem 19.1) \A\51. 

20.17 PV(1) = $12 665, PV(2) = $13 065, PV(3) = $13 565. 

20.18 
i I 2 3 

d; 2 4 4 

20.19 Adjust the machine whenever it is not in state 1. 

20.20 States are the number of mufflers in stock Saturday night, before any new ones are ordered. 

State 0 I 2 3 4 

Decision 3 0 0 0 0 
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20.21 
i 1 2 3 

ii; 0 4 4 

20.22 
State 0 1 2 3 4 

-

Decision 3 0 0 0 0 

20.23 To promote only those shows having a 16, 17, or 18 rating. 

CHAPTEJl 21 

21.10 0.5204, 8.166, 81.66. 21.18 0.9000, 1.23. 

21.11 0.9272, 66.69, 666.9. 21.19 0.0341, 4.30. 

21.12 0.0621, 3.1, 12.1. 21.20 JL = (2/3) min-', 1- po(12) = 0.4530. 

21.13 20.25. 21.21 0.1034. 

21.14 132 805 cars. 21.22 0.1815. 

21.15 7 days. 21.23 A= 1/4, JL = 2/7, 48.95 members. 

21.16 0.029. 21.25 (a) n/A, (b) yes. 

21.17 0.5064, 2.48. 21.26 A,~t + A2~t =(A,+ A2)~t. 

CHAPI'ER 22 

22.6 (a) individuals seeking food; (b) food dispensers and cashier; (c) single queue, multiple servers in series, 

FIFO, infinite capacity if waiting is allowed outside the cafeteria. 

22.7 (a) individuals seeking barber service; (b) barbers; (c) two servers, FIFO, finite capacity of seven. 

22.8 (a) individuals seeking gasoline; (b) customers at the pumps; (c) three servers, FIFO, finite capacity if no 

waiting is permitted outside the station. 

22.9 (a) airplanes waiting to land; (b) runways; (c) generally one server, priority to planes requiring 

emergency landings (otherwise FIFO), infinite capacity. 

22.10 (a) automobiles; (b) toll collectors; (c) as many servers as collectors, FIFO, infinite capacity. 

22.11 (a) jobs to be typed; (b) typists; (c) as many servers as typists, queue discipline may be FIFO or PRI (with 

priority given to jobs submitted by top management or with rush designations), i~finite capacity. 
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22.12 (a) troops; (b) individual spaces on troop carriers; (c) as many servers as there are spaces, PRI by rank, 
infinite capacity. 

22.13 (a) cases; (b) judge; (c) single server, usually FIFO, infinite capacity. 

22.14 (a) 9:30, 10: 18; (b) 1.033; (c) 2.533. 

22.15 (a) 4, (b) 16 (not including the three jobs that arrive at the moment the shift ends). 

22.16 20 min. 

22.17 Five (not including the customer denied entrance at the 60-min mark). 

CHAPTER 23 

23.14 (a) 2.25, (b) 4.5 min, (c) 0.062, (d) 0.25. 

23.15 (a) 2, (b) 1.33, (c) 1 h, (d) 0.368. 

23.16 (a) 2.25, (b) 2.25 min, (c) 3 min, (d) 0.178. 

23.17 (a) 0.9, (b) 1.5, (c) 0.7364, (d) 0.07776. 

23.18 (a) 0.528, (b) 0.2, (c) 0.632. 

23.19 $16.80. 

23.20 Yes, with expected daily savings of $105. 

23.21 110 fe. 

23.22 None on L or Lq; W is reduced by 1/2. 

23.23 p"- 2(1- p ). 

23.26 The expected rate of transitions into state n is Apn-I + f.LPn+l (or f.LPI. if n = 0); the expected rate of 
transitions out of state n is Ap" + f.LPn (or Apo, if n = 0). Equating these and dividing through by f.L gives 
(1) and (2) of Problem 23.7. 

23.27 

23.28 

F(z) = __1!:!_ 
1-pz 

By Theorem 21.1, the departure stream is a Poisson process while the server is busy. This is the case a 
fraction p of the time; hence, the expected number of departures in a unit time interval is 

Pf.L + (1- p )(0) =A 
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CIIAPI'ER 24 

24.11 (a) 1/3, (b) 16/45. 

24.12 (a) 23.5 s, (b) 0.1420, (c) 3.987. 

24.13 With the new system, each teller's idle time drops from 66.67 to 60 percent and L decreases 
from 2(!) = 1 to 0.9524. 

24.14 (a) 0.025, (b) 0.3, (c) 0.675. 

24.15 (a) 2.5, (b) 8 min, (c) $25 per hour. 

24.16 (a) 13 h 4 min, (b) $495.48 per day. 

24.17 No. New cost would be $213.33 from returning unserviced buses, plus $300 for new crew. 

24.18 (a) 53 percent, (b) 1.32 per day. 

24.19 (a) 2.90, (b) 46.4 s, (c) 50.4 h- 1
• 

24.20 (a) 2.089, (b) 6 min 48 s. 

24.21 (a) 2.77, (b) 2.94 min. 

24.22 
1-0.Sp 

po= 1 +0.2p 

24.23 (a) 1.53, (b) 4.72min. 

and 

24.24 (a) 1.51, (b) 3 min 14 s, (c) $3.72 per hour. 

(n = 1, 2, ... ) 

24.25 According to (24.1), the criterion for a steady state (see Problem 23.26) is satisfied if merely steps up into 
state n and steps down from state n occur at the same expected rate. 

24.31 L = p, W = L/A = 1/JL, Wq = 0, Lq = 0. 

24.32 (a) 350, (b) 0.368. 
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24.33 S P ~ 0· n-(s+l)+ ~ no ( )" 
[ 

s s+l No N 1 • (>.r) ]-1 
Po= -- ,L, ---P .L. sp 

s! n=s+l(No-n)! n=O n 

l (~0)(sp)"po 
Pn = No! s'p" 

(No-n)! s! Po 

(n = 1, ... , s) 

(n = s + 1, s + 2,.,., No) 

As No--'> oo, these expressions go over into (24.5) and (24.6), provided p < 1. 

24.35 (a) 5.87, (b) 16 percent. 

24.36 LetS" be the number of customers in service when the state is n (n = 1, 2, ... ). 
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Traffic intensity, 273 
Transition matrix, 224 
Transportation algorithm, 70 
Transportation problem, 170 
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Tree, 169 
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Two-person game, 184 
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Unbounded horizon, 234 
Unconstrained mathematical programs, 1, 110 
Unimodal function, 98 
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Vogel's method, 71 
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W (time in queueing system), 274 
Wq (waiting time), 274 
Weierstrass theorem, 29, 111 
Work column, 33 

Catalog 

If you are interested in a list of SCHAUM'S 
OUTLINE SERIES send your name 
and address, requesting your free catalog, to: 

SCHAUM'S OUTLINE SERIES, Dept. C 
McGRAW-HILL BOOK COMPANY 
1221 Avenue of Americas 
New York, N.Y. 10020 

INDEX 

W(t) (probability distribution function), 274 
Wq(t) (probability distribution function), 274 

Zero-sum game, 184 



SCHAUM'S OUTLINE SERIES 
Each outline series includes basic theory. definitions and hundreds of 
carefully solved problems and supplementary problems with answers. 

ACCOUNTING, BUSINESS 
& ECONOMICS 

Accounting I, 2nd Ed. 
Accounting II, 2nd Ed. 
Advanced Accountin!J 
Advanced Business law 
Advertising 
Bookkeeping & Accounting 
Introduction to Business 
Business law 
Business Mathematics 
Introduction to Business 

Organization & Management 
Business Statistics 
College Business Law 
Contemporary Mathematics of Finance 
Cost Accounting I, 2nd Ed. 
Cost Accounting II 
Development Economics 
Financial Accounting 
Intermediate Accounting I 
International Economics, 2nd Ed. 
Macroeconomic Theory 
Managerial Accounting 
Managerial Finance 
Marketing 
Mathematics for Economists 
Mathematics of Finance 
Microeconomic Theory, 2nd Ed. 
Money and Banking 
Operations Management 
Personal Finance & Consumer Economics 
Principles of Economics 
Quantitative Methods in Management 
Statistics and Econometrics 
Tax Accounting 

BIOLOGY 
Genetics, 2nd Ed. 
Human Anatomy and Physiology 

CHEMISTRY 
Analytical Chemistry 
College Chemistry, 6th Ed. 
Organic Chemistry 
~hysical Chemistry 

COMPUTERS 
Boolean Algebra 
Computer Graphics 
Computer Science 
Computers and Business 
Computers and Programming 
Data Processing 
Data Structures 
Digital Principles 
Discrete Mathematr ~s 
Essential Computer Mathematics 
Microprocessor Fundamentals 
Programming with Advanced 

Structured Cobol 

Programming with Basic, 3rd Ed. 
Programming with Fortran 
Programming with Pascal 
Programming with Structured Cobol 

EDUCATION. PSYCHOLOGY 
& SOCIOLOGY 

Child Psychology 
Introduction to Psychology 
Psychology of learning 
Introduction to Sociology 
Test lie ms in Educatlo n 

ELECTRONICS & ELECTRICAL 
ENGINEERING 

Basic Circuit Analysis 
Basic Electrical Engineering 
Basic Electricity 
Basic Mathematics 1or 

Electricity and Electronics 
Electric Circuits, 2nd Ed. 
Electric Machines and 

Electromechanics 
Electromagnetics 
Electronic Circuits 
Electronic Communication 
Electronics Technology 
Feedback and Control Systems 
Transmission lines 

ENGINEERING 
Acoustics 
Advanced Structural Analysis 
Basic Equations of Engineering 
Continuum Mechanics 
Descriptive Geometry 
Dynamic Structural Analysis 
Introduction to Engineering Calculations 
Engineering Economics 
Engineering Mechanics, 3rd Ed. 
Fluid Dynamics 
Fluid Mechanics & Hydraulics 
Heat Transfer 
I nlroductory Surveying 
Lagrangian Dynamics 
Machine Design 
Mechanical Vibrations 
Operations Research 
Reinforced Concrete Design 
Space Structural Analysis 
Slate Space & linear Systems 
Statics and Strenoth of Materials 
Stenglh of Materials, 2nd Ed. 
Structural Analysis 
Theoretic~:! Mechanics 
Thermodynamics 

ENGLISH 
English Grammar 
Punctuation, Capitalization, & Spelling 

FOREIGN LANGUAGES 
French Grammar, 2nd Ed. 
French Vocabulary 
German Grammar, 2nd Ed. 
German Vocabulary 
Italian Grammar 
Spanish Grammar, 2nd Ed. 
Spanish Vocabulary 

MATHEMATICS & STATISTICS 
Advanced Calculus 
Advanced Mathematics 
Analytic Geometry 
Basic Mathematics 
Beginning Calculus 
Calculus, 2nd Ed. 
College Algebra 
Complex Variables 
Differential Equations 
Differential Geometry 
Elementary Algebra 
Review of Elementary Mathematics 

(including Arithmeticl 
Finite Differences & ·Difference Equations 
Finite Mathematics 
i'irst Year College Mathematics 
Fourier Analysis 
General Topology 
Group Theory 
Laplace Tral\slorms 
linear Algebra 
Mathematical Handbook 
Matrices 
Modern Algebra 
Modern Elementary Algebra 
Modern Introductory Differential Equations 
Numerical Analysis 
Partial Differential Equations 
Plane Geometry 
Probability 
Probability & Statistics 
Projective Geometry 
Real Variables 
Set Theory & Related Topics 
Statistics 
Technical Mathematics 
Trigonometry 
Vector Analysis 

NURSING 
Mathematics for Nursing 

PHYSICS & PHYSICAL SCIENCE 
Applied Physics 
College Physics, 7th Ed. 
Earth Sciences 
Modern Physics 
Optics 
Physical Sciem:~ 

Physi L 7 S C H~UI"J 
------------------------------------~ 

U.L U U8.L 

>$10.'i5 

1'1 00700797 7 .3 

ISBN 0-07-007977-3 


	Front Cover
	Preface
	Contents
	PART I Mathematical Programming
	Chapter 1 MATHEMATICAL PROGRAMMING
	Chapter 2 LINEAR PROGRAMMING: STANDARD FORM
	Chapter 3 LINEAR PROGRAMMING: THEORY OF SOLUTIONS
	Chapter 4 LINEAR PROGRAMMING: THE SIMPLEX METHOD
	Chapter 5 LINEAR PROGRAMMING: DUALITY
	Chapter 6 INTEGER PROGRAMMING: BRANCH-AND-BOUND ALGORITHM
	Chapter 7 INTEGER PROGRAMMING: CUT ALGORITHMS
	Chapter 8 INTEGER PROGRAMMING: THE TRANSPORTATION ALGORITHM
	Chapter 9 INTEGER PROGRAMMING: SCHEDULING MODELS
	Chapter 10 NONLINEAR PROGRAMMING: SINGLE-VARIABLE OPTIMIZATION
	Chapter 11 NONLINEAR PROGRAMMING: MULTIVARIABLE OPTIMIZATION WITHOUT CONSTRAINTS
	Chapter 12 NONLINEAR PROGRAMMING: MULTIVARIABLE OPTIMIZATION WITH CONSTRAINTS
	Chapter 13 QUADRATIC PROGRAMMING
	Chapter 14 DETERMINISTIC DYNAMIC PROGRAMMING
	Chapter 15 NETWORK ANALYSIS

	PART II Probabilistic Methods
	Chapter 16 GAME THEORY
	Chapter 17 DECISION THEORY
	Chapter 18 STOCHASTIC DYNAMIC PROGRAMMING
	Chapter 19 FINITE MARKOV CHAINS
	Chapter 20 UNBOUNDED HORIZONS
	Chapter 21 MARKOVIAN BIRTH-DEATH PROCESSES
	Chapter 22 QUEUEING SYSTEMS
	Chapter 23 M/M/1 SYSTEMS
	Chapter 24 OTHER SYSTEMS WITH POISSON-TYPE INPUT AND EXPONENTIAL-TYPE SERVICE TIMES

	Answers to Supplementary Problems
	Index
	Back Cover



